当前位置: 首页 > news >正文

wordpress只能下载一个文件下载/seo网站优化助理

wordpress只能下载一个文件下载,seo网站优化助理,企业信息网查询系统,c2c网站建设的需求分析文章目录 0 前言1 课题介绍2 算法原理2.1 算法简介2.2 网络架构 3 关键代码4 数据集4.1 安装4.2 打开4.3 选择yolo标注格式4.4 打标签4.5 保存 5 训练6 实现效果6.1 pyqt实现简单GUI6.3 视频识别效果6.4 摄像头实时识别 7 最后 0 前言 🔥 优质竞赛项目系列&#xf…

文章目录

  • 0 前言
  • 1 课题介绍
  • 2 算法原理
    • 2.1 算法简介
    • 2.2 网络架构
  • 3 关键代码
  • 4 数据集
    • 4.1 安装
    • 4.2 打开
    • 4.3 选择yolo标注格式
    • 4.4 打标签
    • 4.5 保存
  • 5 训练
  • 6 实现效果
    • 6.1 pyqt实现简单GUI
    • 6.3 视频识别效果
    • 6.4 摄像头实时识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于YOLO实现的口罩佩戴检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

受全球新冠肺炎疫情影响,虽然目前中国疫情防控取 得了良好效果,绝大多数地区处于疫情低风险,但个别地 区仍有零星散发病例和局部聚集性疫情。在机场、地 铁
站、医院等公共服务和重点机构场所规定必须佩戴口罩, 口罩佩戴检查已成为疫情防控的必备操作。目前,口罩 佩戴检查多为人工检查方式,如高铁上会有乘务人员一节
节车厢巡逻检查提醒乘客佩戴口罩,在医院等高危场所也 会有医务人员提醒时刻戴好口罩。人工检查方式存在检 查效率低下、难以及时发现错误佩戴口罩以及未佩戴口罩
行为等弊端。采用深度学习目标检测方法设计一个具有口罩识别功能的防疫系统,可以大大提高检测效率。

2 算法原理

2.1 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

2.2 网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

3 关键代码

class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_gridclass Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg  # model dictelse:  # is *.yamlimport yaml  # for torch hubself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # model dict# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])]  # default namesself.inplace = self.yaml.get('inplace', True)# Build strides, anchorsm = self.model[-1]  # Detect()if isinstance(m, Detect):s = 256  # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forwardm.anchors /= m.stride.view(-1, 1, 1)check_anchor_order(m)self.stride = m.strideself._initialize_biases()  # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x)  # augmented inference, Nonereturn self._forward_once(x, profile, visualize)  # single-scale inference, traindef _forward_augment(self, x):img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect)  # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # fromb = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1]  # Detect() modulefor mi in m.m:  # fromb = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))# def _print_weights(self):#     for m in self.model.modules():#         if type(m) is Bottleneck:#             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weightsdef fuse(self):  # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnormm.forward = m.forward_fuse  # update forwardself.info()return selfdef autoshape(self):  # add AutoShape moduleLOGGER.info('Adding AutoShape... ')m = AutoShape(self)  # wrap modelcopy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributesreturn mdef info(self, verbose=False, img_size=640):  # print model informationmodel_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return selfdef parse_model(d, ch):  # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else a  # eval stringsexcept NameError:passn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

4 数据集

大家可采用公开标注好的数据集。如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,学长以火灾数据集为例!

4.1 安装

通过pip指令即可安装


pip install labelimg

4.2 打开

在命令行中输入labelimg即可打开

在这里插入图片描述

在这里插入图片描述
打开你所需要进行标注的文件夹

4.3 选择yolo标注格式

点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo。

在这里插入图片描述

4.4 打标签

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok。

注:若要删除目标,右键目标区域,delete即可

在这里插入图片描述

4.5 保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 实现效果

6.1 pyqt实现简单GUI

from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_mask(object):def setupUi(self, Win_mask):Win_mask.setObjectName("Win_mask")Win_mask.resize(1107, 868)Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n""ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_mask)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)font.setStrikeOut(False)self.pushButton_3.setFont(font)self.pushButton_3.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_3.setObjectName("pushButton_3")self.frame_2 = QtWidgets.QFrame(Win_mask)self.frame_2.setGeometry(QtCore.QRect(230, 110, 1031, 861))self.frame_2.setStyleSheet("")self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)self.frame_2.setObjectName("frame_2")self.show_picture_page = QtWidgets.QStackedWidget(self.frame_2)self.show_picture_page.setGeometry(QtCore.QRect(-10, 0, 871, 731))font = QtGui.QFont()font.setBold(True)font.setWeight(75)self.show_picture_page.setFont(font)self.show_picture_page.setObjectName("show_picture_page")self.photo = QtWidgets.QWidget()self.photo.setObjectName("photo")self.label = QtWidgets.QLabel(self.photo)self.label.setGeometry(QtCore.QRect(10, 30, 641, 641))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.label.setFont(font)self.label.setText("")self.label.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.label.setObjectName("label")self.pushButton_4 = QtWidgets.QPushButton(self.photo)self.pushButton_4.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_4.setFont(font)self.pushButton_4.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_4.setObjectName("pushButton_4")self.pushButton_5 = QtWidgets.QPushButton(self.photo)self.pushButton_5.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setUnderline(True)self.pushButton_5.setFont(font)self.pushButton_5.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_5.setObjectName("pushButton_5")self.show_picture_page.addWidget(self.photo)self.videos = QtWidgets.QWidget()self.videos.setObjectName("videos")self.vid_img = QtWidgets.QLabel(self.videos)self.vid_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.vid_img.setFont(font)self.vid_img.setText("")self.vid_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.vid_img.setObjectName("vid_img")self.mp4_detection_btn = QtWidgets.QPushButton(self.videos)self.mp4_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.mp4_detection_btn.setFont(font)self.mp4_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.mp4_detection_btn.setObjectName("mp4_detection_btn")self.vid_stop_btn = QtWidgets.QPushButton(self.videos)self.vid_stop_btn.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn.setFont(font)self.vid_stop_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn.setObjectName("vid_stop_btn")self.show_picture_page.addWidget(self.videos)self.camera = QtWidgets.QWidget()self.camera.setObjectName("camera")self.webcam_detection_btn = QtWidgets.QPushButton(self.camera)self.webcam_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))self.webcam_detection_btn.setBaseSize(QtCore.QSize(2, 2))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.webcam_detection_btn.setFont(font)self.webcam_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.webcam_detection_btn.setObjectName("webcam_detection_btn")self.cam_img = QtWidgets.QLabel(self.camera)self.cam_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.cam_img.setFont(font)self.cam_img.setText("")self.cam_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.cam_img.setObjectName("cam_img")self.vid_stop_btn_cma = QtWidgets.QPushButton(self.camera)self.vid_stop_btn_cma.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn_cma.setFont(font)self.vid_stop_btn_cma.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn_cma.setObjectName("vid_stop_btn_cma")self.show_picture_page.addWidget(self.camera)self.label_2 = QtWidgets.QLabel(Win_mask)self.label_2.setGeometry(QtCore.QRect(430, 40, 251, 71))font = QtGui.QFont()font.setPointSize(24)font.setBold(True)font.setItalic(False)font.setUnderline(True)font.setWeight(75)self.label_2.setFont(font)self.label_2.setStyleSheet("Font{background-color:rgb(85, 170, 255);}")self.label_2.setObjectName("label_2")self.listView = QtWidgets.QListView(Win_mask)self.listView.setGeometry(QtCore.QRect(-5, 1, 1121, 871))self.listView.setStyleSheet(" \n""background-image: url(:/bg.png);")self.listView.setObjectName("listView")self.listView.raise_()self.frame.raise_()self.frame_2.raise_()self.label_2.raise_()self.retranslateUi(Win_mask)self.show_picture_page.setCurrentIndex(0)QtCore.QMetaObject.connectSlotsByName(Win_mask)## 

6.2 图片识别效果

在这里插入图片描述

6.3 视频识别效果

6.4 摄像头实时识别

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

挑战杯 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习

文章目录 0 前言1 课题介绍2 算法原理2.1 算法简介2.2 网络架构 3 关键代码4 数据集4.1 安装4.2 打开4.3 选择yolo标注格式4.4 打标签4.5 保存 5 训练6 实现效果6.1 pyqt实现简单GUI6.3 视频识别效果6.4 摄像头实时识别 7 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xf…...

12. Springboot集成Dubbo3(三)Dubbo-Admin

目录 1、前言 2、安装 2.1、下载Dubbo-admin 2.2、修改配置 2.3、编译前端 2.4、访问 2.5、加载自己的服务 2.6、服务测试 2.7、其他 3、小结 1、前言 Dubbo Admin是用于管理Dubbo服务的基于Web的管理工具。Dubbo Admin提供了一个用户友好的界面&#xff0c;用于在分…...

c语言的数据结构:找环状链表入口处

一起<(&#xffe3;︶&#xffe3;)↗[GO!] 1.如何判断一个链表是否有环 思路:设定两个快慢指针fast和slow,fast每次走两个结点,slow每次走一个节点 如果fast指针遇到了Null,那么这个链表没有环,如果fast和slow可以相遇,则代表这个链表有环 代码如下 N:fast先进环,slow后…...

LabVIEW声速测定实验数据处理

LabVIEW声速测定实验数据处理 介绍了一个基于LabVIEW的声速测定实验数据处理系统的应用。该系统利用LabVIEW的强大数据处理和分析能力&#xff0c;通过设计友好的用户界面和高效的算法&#xff0c;有效提高了声速测定实验的数据处理效率和准确性。通过这个案例&#xff0c;可以…...

深入剖析C语言中的段错误:从内存模型到实战调试全方位解析

引言 在C语言编程的世界里&#xff0c;段错误&#xff08;Segmentation Fault&#xff09;无疑是最常见的运行时错误之一。它源自程序对内存的非法访问&#xff0c;可能由于数组越界、野指针、悬垂指针、栈溢出等各种原因造成。本篇文章旨在带领读者深入探索C语言中的内存管理…...

1.操作Python入门Python安装和使用教程

1. 命令行与环境 为获取各种设置信息&#xff0c;CPython 解析器会扫描命令行与环境。 CPython 实现细节&#xff1a; 其他实现的命令行方案可能会有所不同。 详见 其他实现。 1.1. 命令行 调用 Python 时&#xff0c;可以指定下列任意选项&#xff1a; python [-bBdEhiIO…...

STM32G030C8T6:定时器1ms中断(以64MHz外部晶振为例)

本专栏记录STM32开发各个功能的详细过程&#xff0c;方便自己后续查看&#xff0c;当然也供正在入门STM32单片机的兄弟们参考&#xff1b; 本小节的目标是&#xff0c;系统主频64 MHZ,采用高速外部晶振&#xff0c;通过定时器3 每秒中断控制 PB9 引脚输出高低电平&#xff0c;从…...

人工智能聊天机器人如何帮助您实现工作与生活的平衡

如何用AI聊天机器人实现高效工作生活平衡 工作与生活平衡是管理个人和职业生活需求和责任的能力。 在当今快节奏和竞争激烈的世界中&#xff0c;工作与生活平衡被视为一个理想的目标。然而&#xff0c;对于忙碌的专业人士来说&#xff0c;实现工作与生活的平衡可能具有挑战性&a…...

3分钟看懂设计模式01:策略模式

一、什么是策略模式 定义一些列算法类&#xff0c;将每一个算法封装起来&#xff0c;并让它们可以互相替换。 策略模式让算法独立于使用它的客户而变化&#xff0c;是一种对象行为型模式。 以上是策略模式的一般定义&#xff0c;属于是课本内容。 在没有真正理解策略模式之…...

数据结构与算法:算法详解

1. 引言 1.1 算法在计算机科学中的地位和重要性 算法是计算机科学的基石&#xff0c;它指导着计算机在解决各种问题时的行为。一个好的算法可以使得问题的解决更加高效、精确和可靠&#xff0c;因此在计算机科学中具有至关重要的地位。 1.2 学习算法的意义和目标 学习算法不…...

AOSP10 替换系统launcher

本文实现将原生的launcher 移除&#xff0c;替换成我们自己写的launcher。 分以下几个步骤&#xff1a; 一、新建一个自己的launcher项目。 1.直接使用android studio 新建一个项目。 2.修改AndroidManifest.xml <applicationandroid:persistent"true"androi…...

视频互动游戏如何暴打海王和舔狗

前言 前2篇文章回答了游戏的可取之处以及不可复制的地方还有对于这一类的情景互动游戏在2024年的发展预言。第三篇主要是回答在一篇中一个留言的读者问的问题“如何暴打海王和舔狗”&#xff0c;求同存异&#xff0c;希望能够跟更多的读者交流与互相学习。 海王和舔狗的特征 …...

大学生多媒体课程学习网站thinkphp+vue

开发语言&#xff1a;php 后端框架&#xff1a;Thinkphp 前端框架&#xff1a;vue.js 服务器&#xff1a;apache 数据库&#xff1a;mysql 运行环境:phpstudy/wamp/xammp等开发背景 &#xff08;一&#xff09; 研究课程的提出 &#xff08;二&#xff09;学习网站的分类与界定…...

信息系统项目管理师论文分享(质量管理)

水一篇文章。我发现身边考高项的朋友很多都是论文没过&#xff0c;我想着那就把我的论文分享出来&#xff0c;希望能有帮助。 质量管理 摘要 2020年5月&#xff0c;我作为项目经理参加了“某市某医联体的互联网诊疗&#xff08;互联网医院和远程医疗&#xff09;平台”的建设…...

Redis实现滑动窗口限流

常见限流算法 固定窗口算法 在固定的时间窗口下进行计数&#xff0c;达到阈值就拒绝请求。固定窗口如果在窗口开始就打满阈值&#xff0c;窗口后半部分进入的请求都会拒绝。 滑动窗口算法 在固定窗口的基础上&#xff0c;窗口会随着时间向前推移&#xff0c;可以在时间内平滑控…...

SQL Server查询计划(Query Plan)——XML查询计划

​​​​​​6.4.3. XML查询计划 SQL Server中,除了通过GUI工具和相关命令获取图形及文本查询计划外,我们还可以通过相关命令获取XML格式的查询计划,这里惯称其为XML查询计划。 SQL Server 2005版本引入了XML查询计划的新特性,其充分吸收了图形及文本查询计划的优势所在,…...

【day02】每天三道 java后端面试题:Java、C++和Go的区别 | Redis的特点和应用场景 | 计算机网络七层模型

文章目录 1. Java、C和 Go 语言的区别&#xff0c;各自的优缺点&#xff1f;2. 什么是Redis&#xff1f;Redis 有哪些特点&#xff1f; Redis有哪些常见的应用场景&#xff1f;3. 简述计算机网络七层模型和各自的作用&#xff1f; 1. Java、C和 Go 语言的区别&#xff0c;各自的…...

【Flink状态管理(八)】Checkpoint:CheckpointBarrier对齐后Checkpoint的完成、通知与对学习状态管理源码的思考

文章目录 一. 调用StreamTask执行Checkpoint操作1. 执行Checkpoint总体代码流程1.1. StreamTask.checkpointState()1.2. executeCheckpointing1.3. 将算子中的状态快照操作封装在OperatorSnapshotFutures中1.4. 算子状态进行快照1.5. 状态数据快照持久化 二. CheckpointCoordin…...

防御保护第八、九、十、十一天笔记

一、内容安全 1、DFI和DPI技术 --- 深度检测技术 DPI是一种基于应用层的流量检测和控制技术&#xff0c;它会对流量进行拆包&#xff0c;分析包头和应用层的内容&#xff0c;从而识别应用程序和应用程序的内容。这种技术增加了对应用层的分析&#xff0c;识别各种应用&#xf…...

【TypeScript基础知识点】的讲解

TypeScript基础知识点 TypeScript基础知识点 TypeScript基础知识点 TypeScript 是一种由 Microsoft 开发和维护的开源编程语言&#xff0c;它是 JavaScript 的一个超集&#xff0c;添加了可选的静态类型和基于类的面向对象编程&#xff0c;以下是一些 TypeScript 的基础知识点…...

牛客周赛 Round 34 解题报告 | 珂学家 | 构造思维 + 置换环

前言 整体评价 好绝望的牛客周赛&#xff0c;彻底暴露了CF菜菜的本质&#xff0c;F题没思路&#xff0c;G题用置换环骗了50%, 这大概是唯一的亮点了。 A. 小红的字符串生成 思路: 枚举 a,b两字符在相等情况下比较特殊 a, b input().split() if a b:print (2)print (a)pri…...

LeetCode13 罗马数字转整数

题目 罗马数字包含以下七种字符: I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&…...

【Hudi】Upsert原理

17张图带你彻底理解Hudi Upsert原理 1.开始提交&#xff1a;判断上次任务是否失败&#xff0c;如果失败会触发回滚操作。然后会根据当前时间生成一个事务开始的请求标识元数据。2.构造HoodieRecord Rdd对象&#xff1a;Hudi 会根据元数据信息构造HoodieRecord Rdd 对象&#xf…...

信息系统服务:演绎数字时代的征程

信息系统服务作为数字化时代的基石&#xff0c;已经在人类社会的各个领域发挥着重要作用。本文将从信息系统服务的起源、发展和演化过程&#xff0c;通过生动的例子和准确客观的历史事实&#xff0c;探讨信息系统服务对人类社会的影响与变革。 1. 起源&#xff1a;信息处理的初…...

rust连接postgresql数据库

引入crate&#xff1a; postgres "0.19.7" use postgres::{Client, NoTls, error::Error};fn main() -> Result<(), Error> {let mut client Client::connect("hostlocalhost port5432 dbnamexxxxdb userpostgres passwordxxxxxx", NoTls).un…...

[面试] 什么是死锁? 如何解决死锁?

什么是死锁 死锁&#xff0c;简单来说就是两个或者多个的线程在执行的过程中&#xff0c;争夺同一个共享资源造成的相互等待的现象。如果没有外部干预线程会一直阻塞下去. 导致死锁的原因 互斥条件&#xff0c;共享资源 X 和 Y 只能被一个线程占用; 请求和保持条件&#xf…...

网络原理 HTTP _ HTTPS

回顾 我们前面介绍了HTTP协议的请求和响应的基本结构 请求报文是由首行请求头空行正文来组成的 响应报文是由首行形影头空行响应正文组成的 我们也介绍了一定的请求头之中的键值对的属性 Host,Content-type,Content-length,User-agent,Referer,Cookie HTTP协议中的状态码 我们先…...

软件实际应用实例,茶楼收银软件管理系统操作流程,茶室计时计费会员管理系统软件试用版教程

软件实际应用实例&#xff0c;茶楼收银软件管理系统操作流程&#xff0c;茶室计时计费会员管理系统软件试用版教程 一、前言 以下软件以 佳易王茶社计时计费管理系统软件V17.9为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、计时计费&…...

网络安全“三保一评”深度解析

“没有网络安全就没有国家安全”。近几年&#xff0c;我国法律法规陆续发布实施&#xff0c;为承载我国国计民生的重要网络信息系统的安全提供了法律保障&#xff0c;正在实施的“3保1评”为我国重要网络信息系统的安全构筑了四道防线。 什么是“3保1评”&#xff1f; 等保、分…...

IDA使用-2023CICSN华中赛区pwn题逆向为例

文章目录 相关字节标识导入函数和导出函数找程序入口函数选项设置重命名CISCN2023华中赛区分区赛AWDIDA源码main 构造结构体sub_141B() 打开局部变量类型的视图增加变量类型重新定义变量类型再次设置变量类型并重新定义再次设置变量类型并重新定义再次设置变量类型并重新定义 设…...