挑战杯 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习
文章目录
- 0 前言
- 1 课题介绍
- 2 算法原理
- 2.1 算法简介
- 2.2 网络架构
- 3 关键代码
- 4 数据集
- 4.1 安装
- 4.2 打开
- 4.3 选择yolo标注格式
- 4.4 打标签
- 4.5 保存
- 5 训练
- 6 实现效果
- 6.1 pyqt实现简单GUI
- 6.3 视频识别效果
- 6.4 摄像头实时识别
- 7 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 **基于YOLO实现的口罩佩戴检测 **
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:4分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate

1 课题介绍
受全球新冠肺炎疫情影响,虽然目前中国疫情防控取 得了良好效果,绝大多数地区处于疫情低风险,但个别地 区仍有零星散发病例和局部聚集性疫情。在机场、地 铁
站、医院等公共服务和重点机构场所规定必须佩戴口罩, 口罩佩戴检查已成为疫情防控的必备操作。目前,口罩 佩戴检查多为人工检查方式,如高铁上会有乘务人员一节
节车厢巡逻检查提醒乘客佩戴口罩,在医院等高危场所也 会有医务人员提醒时刻戴好口罩。人工检查方式存在检 查效率低下、难以及时发现错误佩戴口罩以及未佩戴口罩
行为等弊端。采用深度学习目标检测方法设计一个具有口罩识别功能的防疫系统,可以大大提高检测效率。
2 算法原理
2.1 算法简介
YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:
输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。
2.2 网络架构

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。
- 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
- 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
- Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
- Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。
3 关键代码
class Detect(nn.Module):stride = None # strides computed during buildonnx_dynamic = False # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layersuper().__init__()self.nc = nc # number of classesself.no = nc + 5 # number of outputs per anchorself.nl = len(anchors) # number of detection layersself.na = len(anchors[0]) // 2 # number of anchorsself.grid = [torch.zeros(1)] * self.nl # init gridself.anchor_grid = [torch.zeros(1)] * self.nl # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output convself.inplace = inplace # use in-place ops (e.g. slice assignment)def forward(self, x):z = [] # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i]) # convbs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training: # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # whelse: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_gridclass Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg # model dictelse: # is *.yamlimport yaml # for torch hubself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f) # model dict# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors) # override yaml valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])] # default namesself.inplace = self.yaml.get('inplace', True)# Build strides, anchorsm = self.model[-1] # Detect()if isinstance(m, Detect):s = 256 # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forwardm.anchors /= m.stride.view(-1, 1, 1)check_anchor_order(m)self.stride = m.strideself._initialize_biases() # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x) # augmented inference, Nonereturn self._forward_once(x, profile, visualize) # single-scale inference, traindef _forward_augment(self, x):img_size = x.shape[-2:] # height, widths = [1, 0.83, 0.67] # scalesf = [None, 3, None] # flips (2-ud, 3-lr)y = [] # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0] # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y) # clip augmented tailsreturn torch.cat(y, 1), None # augmented inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], [] # outputsfor m in self.model:if m.f != -1: # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x) # runy.append(x if m.i in self.save else None) # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1] # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0] # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scaleif flips == 2:y = img_size[0] - y # de-flip udelif flips == 3:x = img_size[1] - x # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl)) # grid pointse = 1 # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indicesy[0] = y[0][:, :-i] # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indicesy[-1] = y[-1][:, i:] # smallreturn ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect) # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1] # Detect() modulefor mi, s in zip(m.m, m.stride): # fromb = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1] # Detect() modulefor mi in m.m: # fromb = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))# def _print_weights(self):# for m in self.model.modules():# if type(m) is Bottleneck:# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weightsdef fuse(self): # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn) # update convdelattr(m, 'bn') # remove batchnormm.forward = m.forward_fuse # update forwardself.info()return selfdef autoshape(self): # add AutoShape moduleLOGGER.info('Adding AutoShape... ')m = AutoShape(self) # wrap modelcopy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributesreturn mdef info(self, verbose=False, img_size=640): # print model informationmodel_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1] # Detect()if isinstance(m, Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return selfdef parse_model(d, ch): # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchorsno = na * (nc + 5) # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1] # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, argsm = eval(m) if isinstance(m, str) else m # eval stringsfor j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else a # eval stringsexcept NameError:passn = n_ = max(round(n * gd), 1) if n > 1 else n # depth gainif m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:c1, c2 = ch[f], args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n) # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int): # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # modulet = str(m)[8:-2].replace('__main__.', '') # module typenp = sum(x.numel() for x in m_.parameters()) # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)
4 数据集
大家可采用公开标注好的数据集。如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。
以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,学长以火灾数据集为例!
4.1 安装
通过pip指令即可安装
pip install labelimg
4.2 打开
在命令行中输入labelimg即可打开


打开你所需要进行标注的文件夹
4.3 选择yolo标注格式
点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo。

4.4 打标签
点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok。
注:若要删除目标,右键目标区域,delete即可

4.5 保存
点击save,保存txt。

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

5 训练
修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

6 实现效果
6.1 pyqt实现简单GUI
from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_mask(object):def setupUi(self, Win_mask):Win_mask.setObjectName("Win_mask")Win_mask.resize(1107, 868)Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n""ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_mask)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)font.setStrikeOut(False)self.pushButton_3.setFont(font)self.pushButton_3.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_3.setObjectName("pushButton_3")self.frame_2 = QtWidgets.QFrame(Win_mask)self.frame_2.setGeometry(QtCore.QRect(230, 110, 1031, 861))self.frame_2.setStyleSheet("")self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)self.frame_2.setObjectName("frame_2")self.show_picture_page = QtWidgets.QStackedWidget(self.frame_2)self.show_picture_page.setGeometry(QtCore.QRect(-10, 0, 871, 731))font = QtGui.QFont()font.setBold(True)font.setWeight(75)self.show_picture_page.setFont(font)self.show_picture_page.setObjectName("show_picture_page")self.photo = QtWidgets.QWidget()self.photo.setObjectName("photo")self.label = QtWidgets.QLabel(self.photo)self.label.setGeometry(QtCore.QRect(10, 30, 641, 641))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.label.setFont(font)self.label.setText("")self.label.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.label.setObjectName("label")self.pushButton_4 = QtWidgets.QPushButton(self.photo)self.pushButton_4.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_4.setFont(font)self.pushButton_4.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_4.setObjectName("pushButton_4")self.pushButton_5 = QtWidgets.QPushButton(self.photo)self.pushButton_5.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setUnderline(True)self.pushButton_5.setFont(font)self.pushButton_5.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_5.setObjectName("pushButton_5")self.show_picture_page.addWidget(self.photo)self.videos = QtWidgets.QWidget()self.videos.setObjectName("videos")self.vid_img = QtWidgets.QLabel(self.videos)self.vid_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.vid_img.setFont(font)self.vid_img.setText("")self.vid_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.vid_img.setObjectName("vid_img")self.mp4_detection_btn = QtWidgets.QPushButton(self.videos)self.mp4_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.mp4_detection_btn.setFont(font)self.mp4_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.mp4_detection_btn.setObjectName("mp4_detection_btn")self.vid_stop_btn = QtWidgets.QPushButton(self.videos)self.vid_stop_btn.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn.setFont(font)self.vid_stop_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn.setObjectName("vid_stop_btn")self.show_picture_page.addWidget(self.videos)self.camera = QtWidgets.QWidget()self.camera.setObjectName("camera")self.webcam_detection_btn = QtWidgets.QPushButton(self.camera)self.webcam_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))self.webcam_detection_btn.setBaseSize(QtCore.QSize(2, 2))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.webcam_detection_btn.setFont(font)self.webcam_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.webcam_detection_btn.setObjectName("webcam_detection_btn")self.cam_img = QtWidgets.QLabel(self.camera)self.cam_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.cam_img.setFont(font)self.cam_img.setText("")self.cam_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.cam_img.setObjectName("cam_img")self.vid_stop_btn_cma = QtWidgets.QPushButton(self.camera)self.vid_stop_btn_cma.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn_cma.setFont(font)self.vid_stop_btn_cma.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn_cma.setObjectName("vid_stop_btn_cma")self.show_picture_page.addWidget(self.camera)self.label_2 = QtWidgets.QLabel(Win_mask)self.label_2.setGeometry(QtCore.QRect(430, 40, 251, 71))font = QtGui.QFont()font.setPointSize(24)font.setBold(True)font.setItalic(False)font.setUnderline(True)font.setWeight(75)self.label_2.setFont(font)self.label_2.setStyleSheet("Font{background-color:rgb(85, 170, 255);}")self.label_2.setObjectName("label_2")self.listView = QtWidgets.QListView(Win_mask)self.listView.setGeometry(QtCore.QRect(-5, 1, 1121, 871))self.listView.setStyleSheet(" \n""background-image: url(:/bg.png);")self.listView.setObjectName("listView")self.listView.raise_()self.frame.raise_()self.frame_2.raise_()self.label_2.raise_()self.retranslateUi(Win_mask)self.show_picture_page.setCurrentIndex(0)QtCore.QMetaObject.connectSlotsByName(Win_mask)##
6.2 图片识别效果

6.3 视频识别效果

6.4 摄像头实时识别

7 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
挑战杯 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习
文章目录 0 前言1 课题介绍2 算法原理2.1 算法简介2.2 网络架构 3 关键代码4 数据集4.1 安装4.2 打开4.3 选择yolo标注格式4.4 打标签4.5 保存 5 训练6 实现效果6.1 pyqt实现简单GUI6.3 视频识别效果6.4 摄像头实时识别 7 最后 0 前言 🔥 优质竞赛项目系列…...
12. Springboot集成Dubbo3(三)Dubbo-Admin
目录 1、前言 2、安装 2.1、下载Dubbo-admin 2.2、修改配置 2.3、编译前端 2.4、访问 2.5、加载自己的服务 2.6、服务测试 2.7、其他 3、小结 1、前言 Dubbo Admin是用于管理Dubbo服务的基于Web的管理工具。Dubbo Admin提供了一个用户友好的界面,用于在分…...
c语言的数据结构:找环状链表入口处
一起<( ̄︶ ̄)↗[GO!] 1.如何判断一个链表是否有环 思路:设定两个快慢指针fast和slow,fast每次走两个结点,slow每次走一个节点 如果fast指针遇到了Null,那么这个链表没有环,如果fast和slow可以相遇,则代表这个链表有环 代码如下 N:fast先进环,slow后…...
LabVIEW声速测定实验数据处理
LabVIEW声速测定实验数据处理 介绍了一个基于LabVIEW的声速测定实验数据处理系统的应用。该系统利用LabVIEW的强大数据处理和分析能力,通过设计友好的用户界面和高效的算法,有效提高了声速测定实验的数据处理效率和准确性。通过这个案例,可以…...
深入剖析C语言中的段错误:从内存模型到实战调试全方位解析
引言 在C语言编程的世界里,段错误(Segmentation Fault)无疑是最常见的运行时错误之一。它源自程序对内存的非法访问,可能由于数组越界、野指针、悬垂指针、栈溢出等各种原因造成。本篇文章旨在带领读者深入探索C语言中的内存管理…...
1.操作Python入门Python安装和使用教程
1. 命令行与环境 为获取各种设置信息,CPython 解析器会扫描命令行与环境。 CPython 实现细节: 其他实现的命令行方案可能会有所不同。 详见 其他实现。 1.1. 命令行 调用 Python 时,可以指定下列任意选项: python [-bBdEhiIO…...
STM32G030C8T6:定时器1ms中断(以64MHz外部晶振为例)
本专栏记录STM32开发各个功能的详细过程,方便自己后续查看,当然也供正在入门STM32单片机的兄弟们参考; 本小节的目标是,系统主频64 MHZ,采用高速外部晶振,通过定时器3 每秒中断控制 PB9 引脚输出高低电平,从…...
人工智能聊天机器人如何帮助您实现工作与生活的平衡
如何用AI聊天机器人实现高效工作生活平衡 工作与生活平衡是管理个人和职业生活需求和责任的能力。 在当今快节奏和竞争激烈的世界中,工作与生活平衡被视为一个理想的目标。然而,对于忙碌的专业人士来说,实现工作与生活的平衡可能具有挑战性&a…...
3分钟看懂设计模式01:策略模式
一、什么是策略模式 定义一些列算法类,将每一个算法封装起来,并让它们可以互相替换。 策略模式让算法独立于使用它的客户而变化,是一种对象行为型模式。 以上是策略模式的一般定义,属于是课本内容。 在没有真正理解策略模式之…...
数据结构与算法:算法详解
1. 引言 1.1 算法在计算机科学中的地位和重要性 算法是计算机科学的基石,它指导着计算机在解决各种问题时的行为。一个好的算法可以使得问题的解决更加高效、精确和可靠,因此在计算机科学中具有至关重要的地位。 1.2 学习算法的意义和目标 学习算法不…...
AOSP10 替换系统launcher
本文实现将原生的launcher 移除,替换成我们自己写的launcher。 分以下几个步骤: 一、新建一个自己的launcher项目。 1.直接使用android studio 新建一个项目。 2.修改AndroidManifest.xml <applicationandroid:persistent"true"androi…...
视频互动游戏如何暴打海王和舔狗
前言 前2篇文章回答了游戏的可取之处以及不可复制的地方还有对于这一类的情景互动游戏在2024年的发展预言。第三篇主要是回答在一篇中一个留言的读者问的问题“如何暴打海王和舔狗”,求同存异,希望能够跟更多的读者交流与互相学习。 海王和舔狗的特征 …...
大学生多媒体课程学习网站thinkphp+vue
开发语言:php 后端框架:Thinkphp 前端框架:vue.js 服务器:apache 数据库:mysql 运行环境:phpstudy/wamp/xammp等开发背景 (一) 研究课程的提出 (二)学习网站的分类与界定…...
信息系统项目管理师论文分享(质量管理)
水一篇文章。我发现身边考高项的朋友很多都是论文没过,我想着那就把我的论文分享出来,希望能有帮助。 质量管理 摘要 2020年5月,我作为项目经理参加了“某市某医联体的互联网诊疗(互联网医院和远程医疗)平台”的建设…...
Redis实现滑动窗口限流
常见限流算法 固定窗口算法 在固定的时间窗口下进行计数,达到阈值就拒绝请求。固定窗口如果在窗口开始就打满阈值,窗口后半部分进入的请求都会拒绝。 滑动窗口算法 在固定窗口的基础上,窗口会随着时间向前推移,可以在时间内平滑控…...
SQL Server查询计划(Query Plan)——XML查询计划
6.4.3. XML查询计划 SQL Server中,除了通过GUI工具和相关命令获取图形及文本查询计划外,我们还可以通过相关命令获取XML格式的查询计划,这里惯称其为XML查询计划。 SQL Server 2005版本引入了XML查询计划的新特性,其充分吸收了图形及文本查询计划的优势所在,…...
【day02】每天三道 java后端面试题:Java、C++和Go的区别 | Redis的特点和应用场景 | 计算机网络七层模型
文章目录 1. Java、C和 Go 语言的区别,各自的优缺点?2. 什么是Redis?Redis 有哪些特点? Redis有哪些常见的应用场景?3. 简述计算机网络七层模型和各自的作用? 1. Java、C和 Go 语言的区别,各自的…...
【Flink状态管理(八)】Checkpoint:CheckpointBarrier对齐后Checkpoint的完成、通知与对学习状态管理源码的思考
文章目录 一. 调用StreamTask执行Checkpoint操作1. 执行Checkpoint总体代码流程1.1. StreamTask.checkpointState()1.2. executeCheckpointing1.3. 将算子中的状态快照操作封装在OperatorSnapshotFutures中1.4. 算子状态进行快照1.5. 状态数据快照持久化 二. CheckpointCoordin…...
防御保护第八、九、十、十一天笔记
一、内容安全 1、DFI和DPI技术 --- 深度检测技术 DPI是一种基于应用层的流量检测和控制技术,它会对流量进行拆包,分析包头和应用层的内容,从而识别应用程序和应用程序的内容。这种技术增加了对应用层的分析,识别各种应用…...
【TypeScript基础知识点】的讲解
TypeScript基础知识点 TypeScript基础知识点 TypeScript基础知识点 TypeScript 是一种由 Microsoft 开发和维护的开源编程语言,它是 JavaScript 的一个超集,添加了可选的静态类型和基于类的面向对象编程,以下是一些 TypeScript 的基础知识点…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
