当前位置: 首页 > news >正文

C# Onnx 使用onnxruntime部署实时视频帧插值

目录

介绍

效果

模型信息

项目

代码

下载


C# Onnx 使用onnxruntime部署实时视频帧插值

介绍

github地址:https://github.com/google-research/frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.

The official Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn't use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone.

FILM transforms near-duplicate photos into a slow motion footage that look like it is shot with a video camera.

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:I0
tensor:Float[1, 3, -1, -1]
name:I1
tensor:Float[1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:merged
tensor:Float[1, -1, -1, -1]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Numerics;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> input_tensor2;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;
        float[] result_array;

        float[] input1_image;
        float[] input2_image;

        int inpWidth;
        int inpHeight;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        void Preprocess(Mat img, ref float[] input_img)
        {
            Mat rgbimg = new Mat();
            Cv2.CvtColor(img, rgbimg, ColorConversionCodes.BGR2RGB);
            int h = rgbimg.Rows;
            int w = rgbimg.Cols;
            int align = 32;
            if (h % align != 0 || w % align != 0)
            {
                int ph = ((h - 1) / align + 1) * align;
                int pw = ((w - 1) / align + 1) * align;

                Cv2.CopyMakeBorder(rgbimg, rgbimg, 0, ph - h, 0, pw - w, BorderTypes.Constant, 0);
            }

            inpHeight = rgbimg.Rows;
            inpWidth = rgbimg.Cols;

            rgbimg.ConvertTo(rgbimg, MatType.CV_32FC3, 1 / 255.0);

            int image_area = rgbimg.Rows * rgbimg.Cols;

            //input_img = new float[3 * image_area];

            input_img = Common.ExtractMat(rgbimg);

        }

        Mat Interpolate(Mat srcimg1, Mat srcimg2)
        {
            int srch = srcimg1.Rows;
            int srcw = srcimg1.Cols;

            Preprocess(srcimg1, ref input1_image);
            Preprocess(srcimg2, ref input2_image);

            // 输入Tensor
            input_tensor = new DenseTensor<float>(input1_image, new[] { 1, 3, inpHeight, inpWidth });
            input_tensor2 = new DenseTensor<float>(input2_image, new[] { 1, 3, inpHeight, inpWidth });

            //将tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("I0", input_tensor));
            input_container.Add(NamedOnnxValue.CreateFromTensor("I1", input_tensor2));

            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            int out_h = results_onnxvalue[0].AsTensor<float>().Dimensions[2];
            int out_w = results_onnxvalue[0].AsTensor<float>().Dimensions[3];

            result_array = result_tensors.ToArray();

            for (int i = 0; i < result_array.Length; i++)
            {
                result_array[i] = result_array[i] * 255;

                if (result_array[i] < 0)
                {
                    result_array[i] = 0;
                }
                else if (result_array[i] > 255)
                {
                    result_array[i] = 255;
                }

                result_array[i] = result_array[i] + 0.5f;
            }

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(result_array, temp_r, out_h * out_w);
            Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            result_image.ConvertTo(result_image, MatType.CV_8UC3);

            Mat mid_img = new Mat(result_image, new Rect(0, 0, srcw, srch));

            return mid_img;

        }

        private void button2_Click(object sender, EventArgs e)
        {
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "正在运行,请稍后……";
            Application.DoEvents();

            dt1 = DateTime.Now;

            List<String> inputs_imgpath = new List<String>() { "test_img/frame07.png", "test_img/frame08.png", "test_img/frame09.png", "test_img/frame10.png", "test_img/frame11.png", "test_img/frame12.png", "test_img/frame13.png", "test_img/frame14.png" };

            int imgnum = inputs_imgpath.Count();

            for (int i = 0; i < imgnum - 1; i++)
            {
                Mat srcimg1 = Cv2.ImRead(inputs_imgpath[i]);
                Mat srcimg2 = Cv2.ImRead(inputs_imgpath[i + 1]);

                Mat mid_img = Interpolate(srcimg1, srcimg2);

                string save_imgpath = "imgs_results/mid" + i + ".jpg";
                Cv2.ImWrite(save_imgpath, mid_img);
            }

            dt2 = DateTime.Now;

            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/RIFE_HDv3.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            pictureBox1.Image = new Bitmap("test_img/frame11.png");
            pictureBox3.Image = new Bitmap("test_img/frame12.png");

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }

        private void button4_Click(object sender, EventArgs e)
        {
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "正在运行,请稍后……";
            Application.DoEvents();

            dt1 = DateTime.Now;

            Mat srcimg1 = Cv2.ImRead("test_img/frame11.png");
            Mat srcimg2 = Cv2.ImRead("test_img/frame12.png");

            Mat mid_img = Interpolate(srcimg1, srcimg2);

            dt2 = DateTime.Now;

            pictureBox2.Image = new Bitmap(mid_img.ToMemoryStream());

            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            button2.Enabled = true;
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Numerics;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;Tensor<float> input_tensor2;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;float[] result_array;float[] input1_image;float[] input2_image;int inpWidth;int inpHeight;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}void Preprocess(Mat img, ref float[] input_img){Mat rgbimg = new Mat();Cv2.CvtColor(img, rgbimg, ColorConversionCodes.BGR2RGB);int h = rgbimg.Rows;int w = rgbimg.Cols;int align = 32;if (h % align != 0 || w % align != 0){int ph = ((h - 1) / align + 1) * align;int pw = ((w - 1) / align + 1) * align;Cv2.CopyMakeBorder(rgbimg, rgbimg, 0, ph - h, 0, pw - w, BorderTypes.Constant, 0);}inpHeight = rgbimg.Rows;inpWidth = rgbimg.Cols;rgbimg.ConvertTo(rgbimg, MatType.CV_32FC3, 1 / 255.0);int image_area = rgbimg.Rows * rgbimg.Cols;//input_img = new float[3 * image_area];input_img = Common.ExtractMat(rgbimg);}Mat Interpolate(Mat srcimg1, Mat srcimg2){int srch = srcimg1.Rows;int srcw = srcimg1.Cols;Preprocess(srcimg1, ref input1_image);Preprocess(srcimg2, ref input2_image);// 输入Tensorinput_tensor = new DenseTensor<float>(input1_image, new[] { 1, 3, inpHeight, inpWidth });input_tensor2 = new DenseTensor<float>(input2_image, new[] { 1, 3, inpHeight, inpWidth });//将tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("I0", input_tensor));input_container.Add(NamedOnnxValue.CreateFromTensor("I1", input_tensor2));//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();int out_h = results_onnxvalue[0].AsTensor<float>().Dimensions[2];int out_w = results_onnxvalue[0].AsTensor<float>().Dimensions[3];result_array = result_tensors.ToArray();for (int i = 0; i < result_array.Length; i++){result_array[i] = result_array[i] * 255;if (result_array[i] < 0){result_array[i] = 0;}else if (result_array[i] > 255){result_array[i] = 255;}result_array[i] = result_array[i] + 0.5f;}float[] temp_r = new float[out_h * out_w];float[] temp_g = new float[out_h * out_w];float[] temp_b = new float[out_h * out_w];Array.Copy(result_array, temp_r, out_h * out_w);Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w);Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w);Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);result_image = new Mat();Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);result_image.ConvertTo(result_image, MatType.CV_8UC3);Mat mid_img = new Mat(result_image, new Rect(0, 0, srcw, srch));return mid_img;}private void button2_Click(object sender, EventArgs e){button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "正在运行,请稍后……";Application.DoEvents();dt1 = DateTime.Now;List<String> inputs_imgpath = new List<String>() { "test_img/frame07.png", "test_img/frame08.png", "test_img/frame09.png", "test_img/frame10.png", "test_img/frame11.png", "test_img/frame12.png", "test_img/frame13.png", "test_img/frame14.png" };int imgnum = inputs_imgpath.Count();for (int i = 0; i < imgnum - 1; i++){Mat srcimg1 = Cv2.ImRead(inputs_imgpath[i]);Mat srcimg2 = Cv2.ImRead(inputs_imgpath[i + 1]);Mat mid_img = Interpolate(srcimg1, srcimg2);string save_imgpath = "imgs_results/mid" + i + ".jpg";Cv2.ImWrite(save_imgpath, mid_img);}dt2 = DateTime.Now;textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){model_path = "model/RIFE_HDv3.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();pictureBox1.Image = new Bitmap("test_img/frame11.png");pictureBox3.Image = new Bitmap("test_img/frame12.png");}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}private void button4_Click(object sender, EventArgs e){button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "正在运行,请稍后……";Application.DoEvents();dt1 = DateTime.Now;Mat srcimg1 = Cv2.ImRead("test_img/frame11.png");Mat srcimg2 = Cv2.ImRead("test_img/frame12.png");Mat mid_img = Interpolate(srcimg1, srcimg2);dt2 = DateTime.Now;pictureBox2.Image = new Bitmap(mid_img.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}}
}

下载

源码下载

相关文章:

C# Onnx 使用onnxruntime部署实时视频帧插值

目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址&#xff1a;https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…...

编程笔记 Golang基础 016 数据类型:数字类型

编程笔记 Golang基础 016 数据类型&#xff1a;数字类型 1. 整数类型&#xff08;Integer Types&#xff09;a) 固定长度整数&#xff1a;b) 变长整数&#xff1a; 2. 浮点数类型&#xff08;Floating-Point Types&#xff09;3. 复数类型&#xff08;Complex Number Types&…...

一周学会Django5 Python Web开发-会话管理(CookiesSession)

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计26条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…...

QT之QString.arg输出固定位数

问题描述 我需要用QString输出一个固定位数的数字字符串。起初我的代码是这样&#xff1a; int img_num 1 auto new_name QString("%1.png").arg((int)img_num, 3, 10, 0); //最后一个参数用u0也是一样的 qDebug() << "new_name:" << new…...

Linux下各种压缩包的压缩与解压

tar 归档&#xff0c;不压缩&#xff0c;常见后缀 .tar # 将文件夹归档成为一个包 tar cf rootfs.tar rootfs # 将归档包还原为文件夹 tar xf rootfs.tar # 将归档包还原到路径 a/b/c tar xf rootfs.tar -C a/b/cgzip压缩&#xff0c; 常见后缀 .tar.gz .tgz # 压缩 tar czf …...

【ctfshow—web】——信息搜集篇1(web1~20详解)

ctfshow—web题解 web1web2web3web4web5web6web7web8web9web10web11web12web13web14web15web16web17web18web19web20 web1 题目提示 开发注释未及时删除 那就找开发注释咯&#xff0c;可以用F12来查看&#xff0c;也可以CtrlU直接查看源代码呢 就拿到flag了 web2 题目提示 j…...

GEE入门篇|遥感专业术语(实践操作4):光谱分辨率(Spectral Resolution)

目录 光谱分辨率&#xff08;Spectral Resolution&#xff09; 1.MODIS 2.EO-1 光谱分辨率&#xff08;Spectral Resolution&#xff09; 光谱分辨率是指传感器进行测量的光谱带的数量和宽度。 您可以将光谱带的宽度视为每个波段的波长间隔&#xff0c;在多个波段测量辐射亮…...

c++中模板的注意事项

1. 模板定义时&#xff0c;<>中的虚拟类型参数不能为空。(因为我们使用模板就是希望使用模拟类型代替其它的类型&#xff0c;如果我们不定义就没有意义了) 2. 无论是定义函数模板还是类模板&#xff0c;其实template定义与后面使用虚拟类型的类或者函数&#xff0c;是…...

【代码随想录python笔记整理】第十三课 · 链表的基础操作 1

前言:本笔记仅仅只是对内容的整理和自行消化,并不是完整内容,如有侵权,联系立删。 一、链表 在之前的学习中,我们接触到了字符串和数组(列表)这两种结构,它们具有着以下的共同点:1、元素按照一定的顺序来排列。2、可以通过索引来访问数组中的元素和字符串中的字符。由此,…...

JAVA工程师面试专题-《Mysql》篇

目录 一、基础 1、mysql可以使用多少列创建索引&#xff1f; 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎&#xff0c;两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别&#xff1f; 7、IN与EXISTS的区别 二、索引 1、索引及索…...

@ 代码随想录算法训练营第4周(C语言)|Day22(二叉树)

代码随想录算法训练营第4周&#xff08;C语言&#xff09;|Day22&#xff08;二叉树&#xff09; Day22、二叉树&#xff08;包含题目 ● 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点 &#xff09; 235. 二叉搜索树的最近公…...

福特锐界2021plus 汽车保养手册

福特锐界2021plus汽车保养手册两页&#xff0c;零部件保养要求&#xff0c;电子版放这里方便查询&#xff1a;...

c++进阶路线

学完C后的进阶路线-初学者勿入【程序员Rock】_哔哩哔哩_bilibili 1.系统训练代码阅读能力 代码阅读工具&#xff1a; 1&#xff09;.Source Insight(阅读大型源码) 2&#xff09;.understand(整体代码模块关系构建) 3&#xff09;.SOURCETRAIL 代码阅读能力--千行级 嵌入…...

python中的类与对象(2)

目录 一. 类的基本语法 二. 类属性的应用场景 三. 类与类之间的依赖关系 &#xff08;1&#xff09;依赖关系 &#xff08;2&#xff09;关联关系 &#xff08;3&#xff09;组合关系 四. 类的继承 一. 类的基本语法 先看一段最简单的代码&#xff1a; class Dog():d_…...

Android横竖屏切换configChanges=“screenSize|orientation“避免activity销毁重建,Kotlin

Android横竖屏切换configChanges"screenSize|orientation"避免activity销毁重建&#xff0c;Kotlin 如果不在Androidmanifest.xml设置activity的&#xff1a; android:configChanges"screenSize|orientation" 那么&#xff0c;每次横竖屏切换activity都会…...

【C语言基础】:操作符详解(二)

文章目录 操作符详解一、上期扩展二、单目操作符三、逗号表达式四、下标访问[]、 函数调用()五、结构成员访问操作符六、操作符的属性&#xff1a;优先级、结合性1. 优先级2. 结合性 操作符详解 上期回顾&#xff1a;【C语言基础】&#xff1a;操作符详解(一) 一、上期扩展 …...

模型训练基本结构

project_name/ │ ├── data/ │ ├── raw/ # 存放原始数据 │ ├── processed/ # 存放预处理后的数据 │ └── splits/ # 存放数据集划分&#xff08;训练集、验证集、测试集等&#xff09; │ ├── noteboo…...

Redis 数据结构详解:底层实现与高效使用场景

String&#xff08;字符串&#xff09; 底层实现细节&#xff1a; 动态字符串&#xff08;SDS&#xff09;: SDS相比于C语言的原生字符串&#xff0c;提供了自动内存管理和预分配机制。当字符串长度增加时&#xff0c;SDS会预先分配额外的空间&#xff0c;以减少内存重新分配…...

Vue2:router-link的replace属性

一、情景说明 我们在用浏览器访问网站的时候 知道浏览器会记录访问的历史路径&#xff0c;从而&#xff0c;可以退回到之前的页面 那么&#xff0c;Vue项目中的路由组件&#xff0c;通过router-link跳转&#xff0c;也是可以退回的 这里&#xff0c;我们用replace来屏蔽退回的…...

普中51单片机(DS18B20温度传感器)

DS18B20温度传感器原理 内部结构 64位(激)光刻只读存储器 光刻ROM中的64位序列号是出厂前被光刻好的&#xff0c;它可以看作是该DS18B20的地址序列号。64位光刻ROM的排列是&#xff1a;开始8位&#xff08;28H&#xff09;是产品类型标号&#xff0c;接着的48位是该DS18B20自身…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前&#xff0c;首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例&#xff0c;用_OBJECT_TYPE这个结构来解析它&#xff0c;0x80处就是今天要介绍的回调链表&#xff0c;但是先不着急&#xff0c;先把目光…...