半监督节点分类-graph learning
半监督节点分类相当于在一个图当中,用一部分节点的类别上已知的,有另外一部分节点的类别是未知的,目标是使用有标签的节点来推断没有标签的节点
注意 半监督节点分类属于直推式学习,直推式学习相当于出现新节点后,需要重新进行训练
但是图神经网络属于归纳式学习,当图当中出现一个新节点的时候,可以快速进行泛化
半监督节点分类问题的解决方法:节点特征工程;节点表示学习(图嵌入,如随机游走);标签传播(消息传递);图神经网络
massage passing:消息传递机制 相当于使用一个节点的领域的其他节点,来预测该节点
1.标签传播 label propagation (relational classification)
Two explanations for why behaviors of nodes in networks are correlated:
Homophily:具有相同属性的节点,更可能相连并具有相同的类别
Influence:社交关系会影响节点类别
首先,在初始化当中,需要将已知标签节点的类别设定为0或1.
然后将所有不知道类别的节点类别设定为0.5。
然后需要对所有未知节点值进行多轮加权平均/平均的计算。
然后不断进行计算,直到收敛(convergence)
Update all nodes in a random until convergence or until max number of Iteration is reached
缺点:仅使用到了网络的连接信息,没有使用到节点的属性特征;且并不能保证收敛
2.iterative classfication 算法 / ICA算法
既要用到图当中节点的属性特征,又要去用用图当中节点的连接信息
需要去训练两个分类器
第一个分类器仅仅使用节点的属性特征 base classifier
第二个分分类器,输入的是属性特征和连接信息。
使用节点的属性特征和网络的连接特征(即一个包含邻域节点类别信息的向量Z) relational classifier
首先需要使用已经标准的节点 作为训练集 来训练两个分类器
然后相当于使用第一个分类器来提供初始的节点标签
然后再使用第二个分类器进行不断的循环迭代。不断更新Y和Z
3. Correct and Smooth
是一种后处理的方法
具体步骤:
首先需要理由已经标注的节点来训练一个 base predictor
第二步:然后use this base predictor to predict soft labels of all nodes
(注意这里第二步预测的是软标签,即例如class 0的概率是一个值,class 1的概率是一个值,这两个值的加和为1,且包括已经有类别标签的节点也许需要预测,得到所有节点的soft label)
We expect these soft label to be decently accurate.
we can use graph structure to post-process the predictions to make them more current.
相当于想让模型对于这些不太确信的节点更加确信。
第三步:post-process the predictions using graph structure to obtain the final prediction of all nodes
Correct and smooth use the 2-step procedure to post-process the soft predictions
分为correct step 和 smooth step
Correct step 当中相当于认为error在图当中也有homophily,因此应该分散不确定性和困惑度,仅仅计算有标注的
下一时刻的error矩阵既要和上一时刻的error矩阵相关,又需要和传播扩散相关
相当于将不确定性和困惑度进行了扩散
需要注意的是,在correct 和 smooth 当中,前者使用的是误差矩阵进行传播,但是后者
使用节点分类预测的置信度进行传播
4.Loopy Belief propagation
Belief propagation is a dynamic programming approach to answering probability
Queries in a graph
相当于节点和节点之间是可以传递消息的
相关文章:
半监督节点分类-graph learning
半监督节点分类相当于在一个图当中,用一部分节点的类别上已知的,有另外一部分节点的类别是未知的,目标是使用有标签的节点来推断没有标签的节点 注意 半监督节点分类属于直推式学习,直推式学习相当于出现新节点后,需要…...

软件文档-运维-开发-管理-资质-评审-招投标-验收
开发文档:这类文档主要用于记录软件的开发过程和细节,包括: 《功能要求》:描述了软件应具备的功能,是软件开发的基础。《投标方案》:向潜在的客户或招标方展示公司的技术和项目实施能力。《需求分析》&…...

猫头虎分享已解决Bug || Vue中的TypeError: Cannot read property ‘name‘ of undefined 错误
博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...
技术应用:使用Spring Boot、MyBatis Plus和Dynamic DataSource实现多数据源
引言 在现代的软件开发中,许多应用程序需要同时访问多个数据库。例如,一个电子商务平台可能需要访问多个数据库来存储用户信息、产品信息和订单信息等。在这种情况下,使用多数据源是一种常见的解决方案,它允许我们在一个应用程序…...

C# Onnx 使用onnxruntime部署实时视频帧插值
目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址:https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…...
编程笔记 Golang基础 016 数据类型:数字类型
编程笔记 Golang基础 016 数据类型:数字类型 1. 整数类型(Integer Types)a) 固定长度整数:b) 变长整数: 2. 浮点数类型(Floating-Point Types)3. 复数类型(Complex Number Types&…...

一周学会Django5 Python Web开发-会话管理(CookiesSession)
锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计26条视频,包括:2024版 Django5 Python we…...
QT之QString.arg输出固定位数
问题描述 我需要用QString输出一个固定位数的数字字符串。起初我的代码是这样: int img_num 1 auto new_name QString("%1.png").arg((int)img_num, 3, 10, 0); //最后一个参数用u0也是一样的 qDebug() << "new_name:" << new…...
Linux下各种压缩包的压缩与解压
tar 归档,不压缩,常见后缀 .tar # 将文件夹归档成为一个包 tar cf rootfs.tar rootfs # 将归档包还原为文件夹 tar xf rootfs.tar # 将归档包还原到路径 a/b/c tar xf rootfs.tar -C a/b/cgzip压缩, 常见后缀 .tar.gz .tgz # 压缩 tar czf …...

【ctfshow—web】——信息搜集篇1(web1~20详解)
ctfshow—web题解 web1web2web3web4web5web6web7web8web9web10web11web12web13web14web15web16web17web18web19web20 web1 题目提示 开发注释未及时删除 那就找开发注释咯,可以用F12来查看,也可以CtrlU直接查看源代码呢 就拿到flag了 web2 题目提示 j…...

GEE入门篇|遥感专业术语(实践操作4):光谱分辨率(Spectral Resolution)
目录 光谱分辨率(Spectral Resolution) 1.MODIS 2.EO-1 光谱分辨率(Spectral Resolution) 光谱分辨率是指传感器进行测量的光谱带的数量和宽度。 您可以将光谱带的宽度视为每个波段的波长间隔,在多个波段测量辐射亮…...
c++中模板的注意事项
1. 模板定义时,<>中的虚拟类型参数不能为空。(因为我们使用模板就是希望使用模拟类型代替其它的类型,如果我们不定义就没有意义了) 2. 无论是定义函数模板还是类模板,其实template定义与后面使用虚拟类型的类或者函数,是…...
【代码随想录python笔记整理】第十三课 · 链表的基础操作 1
前言:本笔记仅仅只是对内容的整理和自行消化,并不是完整内容,如有侵权,联系立删。 一、链表 在之前的学习中,我们接触到了字符串和数组(列表)这两种结构,它们具有着以下的共同点:1、元素按照一定的顺序来排列。2、可以通过索引来访问数组中的元素和字符串中的字符。由此,…...

JAVA工程师面试专题-《Mysql》篇
目录 一、基础 1、mysql可以使用多少列创建索引? 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎,两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别? 7、IN与EXISTS的区别 二、索引 1、索引及索…...
@ 代码随想录算法训练营第4周(C语言)|Day22(二叉树)
代码随想录算法训练营第4周(C语言)|Day22(二叉树) Day22、二叉树(包含题目 ● 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点 ) 235. 二叉搜索树的最近公…...

福特锐界2021plus 汽车保养手册
福特锐界2021plus汽车保养手册两页,零部件保养要求,电子版放这里方便查询:...
c++进阶路线
学完C后的进阶路线-初学者勿入【程序员Rock】_哔哩哔哩_bilibili 1.系统训练代码阅读能力 代码阅读工具: 1).Source Insight(阅读大型源码) 2).understand(整体代码模块关系构建) 3).SOURCETRAIL 代码阅读能力--千行级 嵌入…...

python中的类与对象(2)
目录 一. 类的基本语法 二. 类属性的应用场景 三. 类与类之间的依赖关系 (1)依赖关系 (2)关联关系 (3)组合关系 四. 类的继承 一. 类的基本语法 先看一段最简单的代码: class Dog():d_…...
Android横竖屏切换configChanges=“screenSize|orientation“避免activity销毁重建,Kotlin
Android横竖屏切换configChanges"screenSize|orientation"避免activity销毁重建,Kotlin 如果不在Androidmanifest.xml设置activity的: android:configChanges"screenSize|orientation" 那么,每次横竖屏切换activity都会…...

【C语言基础】:操作符详解(二)
文章目录 操作符详解一、上期扩展二、单目操作符三、逗号表达式四、下标访问[]、 函数调用()五、结构成员访问操作符六、操作符的属性:优先级、结合性1. 优先级2. 结合性 操作符详解 上期回顾:【C语言基础】:操作符详解(一) 一、上期扩展 …...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...