pytorch实现transformer模型
Transformer是一种强大的神经网络架构,可用于处理序列数据,例如自然语言处理任务。在PyTorch中,可以使用torch.nn.Transformer类轻松实现Transformer模型。
以下是一个简单的Transformer模型实现的示例代码,它将一个输入序列转换为一个输出序列,可以用于序列到序列的翻译任务:
示例代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
import mathclass PositionalEncoding(nn.Module):def __init__(self, d_model, dropout=0.1, max_len=5000):super().__init__()self.dropout = nn.Dropout(p=dropout)pe = torch.zeros(max_len, d_model)position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))pe[:, 0::2] = torch.sin(position * div_term)pe[:, 1::2] = torch.cos(position * div_term)pe = pe.unsqueeze(0).transpose(0, 1)self.register_buffer('pe', pe)def forward(self, x):x = x + self.pe[:x.size(0), :]return self.dropout(x)class TransformerModel(nn.Module):def __init__(self, input_vocab_size, output_vocab_size, d_model, nhead, num_layers, dim_feedforward, dropout=0.1):super(TransformerModel, self).__init__()self.d_model = d_modelself.nhead = nheadself.num_layers = num_layersself.dim_feedforward = dim_feedforwardself.embedding = nn.Embedding(input_vocab_size, d_model)self.pos_encoder = PositionalEncoding(d_model, dropout)encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)self.decoder = nn.Linear(d_model, output_vocab_size)self.init_weights()def init_weights(self):initrange = 0.1self.embedding.weight.data.uniform_(-initrange, initrange)self.decoder.bias.data.zero_()self.decoder.weight.data.uniform_(-initrange, initrange)def forward(self, src, src_mask=None):src = self.embedding(src) * math.sqrt(self.d_model)src = self.pos_encoder(src)output = self.transformer_encoder(src, src_mask)output = self.decoder(output)return output
在上面的代码中,我们定义了一个名为TransformerModel的模型类,它继承自nn.Module。该模型包括以下组件:
nn.Embedding:将输入序列中的每个标记转换为其向量表示。
PositionalEncoding:将序列中每个标记的位置编码为向量。
nn.TransformerEncoder:将编码后的输入序列转换为输出序列。
nn.Linear:将Transformer的输出转换为最终输出序列。
可以根据自己的需求修改TransformerModel类中的超参数,例如输入和输出词汇表大小、嵌入维度、Transformer层数、隐藏层维度等等。使用该模型进行训练时,您需要定义损失函数和优化器,并使用PyTorch的标准训练循环进行训练。
在 Transformer 中,Positional Encoding 的作用是将输入序列中的位置信息嵌入到向量空间中,从而使得每个位置对应的向量是唯一的。这个实现中,Positional Encoding 采用了公式:
PE(pos,2i)=sin(pos/100002i/dmodel)\text{PE}{(pos, 2i)} = \sin(pos / 10000^{2i/d{\text{model}}})PE(pos,2i)=sin(pos/100002i/dmodel)
PE(pos,2i+1)=cos(pos/100002i/dmodel)\text{PE}{(pos, 2i+1)} = \cos(pos / 10000^{2i/d{\text{model}}})PE(pos,2i+1)=cos(pos/100002i/dmodel)
其中 pos 表示输入序列中的位置,i 表示向量的维度。最终得到的 Positional Encoding 矩阵被添加到输入序列的嵌入向量中。
相关文章:
pytorch实现transformer模型
Transformer是一种强大的神经网络架构,可用于处理序列数据,例如自然语言处理任务。在PyTorch中,可以使用torch.nn.Transformer类轻松实现Transformer模型。 以下是一个简单的Transformer模型实现的示例代码,它将一个输入序列转换为…...
【懒加载数据 Objective-C语言】
一、咱们就开始进行懒加载 1.懒加载发现,每一个字典,是不是就是四个键值对组成的: 1)answer:String,中国合伙人, 2)icon:String,movie_zghhr, 3)title:String,创业励志电影, 4)options:Array,21 items 前三个都是String类型,最后是不是Array类型, 所…...
人脸网格/人脸3D重建 face_mesh(毕业设计+代码)
概述 Face Mesh是一个解决方案,可在移动设备上实时估计468个3D面部地标。它利用机器学习(ML)推断3D面部表面,只需要单个摄像头输入,无需专用深度传感器。利用轻量级模型架构以及整个管道中的GPU加速,该解决…...
JMeter 控制并发数
文章目录一、误区二、正确设置 JMeter 的并发数总结没用过 JMeter 的同学,可以先过一遍他的简单使用例子 https://blog.csdn.net/weixin_42132143/article/details/118875293?spm1001.2014.3001.5501 一、误区 在使用 JMeter 做压测时,大家都知道要这么…...
git常用命令汇总
Git 是一种分布式版本控制系统,它具有以下优点: 分布式:每个开发者都可以拥有自己的本地代码仓库,不需要连接到中央服务器,这样可以避免单点故障和网络延迟等问题。 非线性开发:Git 可以支持多个分支并行开…...
【2023】华为OD机试真题Java-题目0226-寻找相似单词
寻找相似单词 题目描述 给定一个可存储若干单词的字典,找出指定单词的所有相似单词,并且按照单词名称从小到大排序输出。单词仅包括字母,但可能大小写并存(大写不一定只出现在首字母)。 相似单词说明:给定一个单词X,如果通过任意交换单词中字母的位置得到不同的单词Y,…...
【项目管理】晋升为领导后,如何开展工作?
兵随将转,作为管理者,你可以不知道下属的短处,却不能不知道下属的长处。晋升为领导后,如何开展工作呢? 金九银十,此期间换工作的人不在少数。有几位朋友最近都换了公司,职位得到晋升,…...
JAVA开发(Spring Gateway 的原理和使用)
在springCloud的架构中,业务服务都是以微服务来划分的,每个服务可能都有自己的地址和端口。如果前端或者说是客户端直接去调用不同的微服务的话,就要配置不同的地址。其实这是一个解耦和去中心化出现的弊端。所以springCloud体系中࿰…...
踩坑:解决npm版本升级报错,无法安装node-sass的问题
npm版本由于经常更新,迁移前端项目时经常发现报错安装不上。 比如,项目经常使用的sass模块,可能迁移的时候就发现安装不了。 因为node-sass 编译器是通过 C 实现的。在 Node.js 中,采用 gyp 构建工具进行构建 C 代码,…...
xFormers安装使用
xFormers是一个模块化和可编程的Transformer建模库,可以加速图像的生成。 这种优化仅适用于nvidia gpus,它加快了图像生成,并降低了vram的使用量,而成本产生了非确定性的结果。 下载地址: https://github.com/faceb…...
React—— hooks(一)
🧁个人主页:个人主页 ✌支持我 :点赞👍收藏🌼关注🧡 文章目录⛳React Hooks💸useState(保存组件状态)🥈useEffect(处理副作用)🔋useCallback(记忆函数&#…...
Ubuntu20.04下noetic版本ros安装时rosdep update失败解决方法【一行命令】
一、问题: 安装完ros后,需要执行sudo rosdep init,但是在没有全局科学上网的前提下,执行sudo rosdep init势必会报错: ERROR: cannot download default sources list from: https://raw.githubusercontent.com/ros/r…...
Vue2.0开发之——购物车案例-Footer组件封装-计算商品的总价格(51)
一 概述 App.vue中计算勾选商品的总价格定义子组件Footer中的商品总价格将App.vue中商品的总价格传递给Footer显示 二 App.vue中计算勾选商品的总价格 2.1 商品总价格的计算逻辑 所有勾选商品的价格*数量 2.2 App.vue中通过计算属性计算总价格 通过计算属性计算总价格 co…...
德鲁特金属导电理论(Drude)
德鲁特模型的重要等式 首先我们建立德鲁特模型的重要等式 我们把原子对于电子的阻碍作用,用一个冲量近似表示出来 在式子 首先定义一个等效加速度 由于 我们可以得到电导率的微观表达式 在交流电环境中 电场的表达式 借鉴上一问的公式 我们可以列出这样的表达式…...
(十一)python网络爬虫(理论+实战)——html解析库:BeautfulSoup详解
系列文章: python网络爬虫专栏 目录 序言 本节学习目标 特别申明...
四轮两驱小车(五):蓝牙HC-08通信
前言: 在我没接触蓝牙之前,我觉得蓝牙模块应用起来应该挺麻烦,后来发觉这个蓝牙模块的应用本质无非就是一个串口 蓝牙模块: 这是我从某宝上买到的蓝牙模块HC-08,价格还算可以,而且可以适用于大多数蓝牙调试…...
华为OD机试题 - 对称美学(JavaScript)| 机考必刷
华为OD机试题 最近更新的博客使用说明本篇题解:对称美学题目输入输出示例一输入输出说明示例二输入输出备注Code解题思路华为OD其它语言版本最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典...
Web Spider案例 网洛克 第四题 JSFuck加密 练习(八)
声明 此次案例只为学习交流使用,抓包内容、敏感网址、数据接口均已做脱敏处理,切勿用于其他非法用途; 文章目录声明一、资源推荐二、逆向目标三、抓包分析 & 下断分析逆向3.1 抓包分析3.2 下断分析逆向拿到混淆JS代码3.3 JSFuck解决方式…...
【JavaScript速成之路】JavaScript数组
📃个人主页:「小杨」的csdn博客 🔥系列专栏:【JavaScript速成之路】 🐳希望大家多多支持🥰一起进步呀! 文章目录前言1,初识数组1.1,数组1.2,创建数组1.3&…...
路由传参含对象数据刷新页面数据丢失
目录 一、问题描述 二、 解决办法 一、问题描述 【1】众所周知,在veu项目开发过程中,我们常常会用到通过路由的方式在页面中传递数据。但是用到this.$route.query.ObjectData的页面,刷新后会导致this.$route.query.ObjectData数据丢失。 …...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
