当前位置: 首页 > news >正文

2575. 找出字符串的可整除数组(Go语言)

https://leetcode.cn/problems/find-the-divisibility-array-of-a-string/

在这里插入图片描述

  • 在看题解之前,我的代码是以下这样:
package mainimport ("fmt"
)func main() {fmt.Println(divisibilityArray("998244353", 3))
}func divisibilityArray(word string, m int) []int {result := make([]int, len(word))sum := 0for i, num := range word {sum = sum*10 + int(num-'0')//fmt.Println(sum)if sum%m == 0 {result[i] = 1} else {result[i] = 0}}return result
}

在这里插入图片描述

  • 在运行时,会卡在当前数据上,看逻辑,总觉得没有问题,但会出现如此结果,只好去翻看官解,官方的答案思路如下:
func divisibilityArray(word string, m int) []int {result := make([]int, len(word))sum := 0for i, num := range word {sum = (sum*10 + int(num-'0'))%m//fmt.Println(sum)if sum == 0 {result[i] = 1} else {result[i] = 0}}return result
}
  • 从代码上看,区别在if里面去%求余和在sum计算时求余的区别,后来在单步执行的时候,猛然发现其中的区别:
  • 第一个代码中,sum在每次循环中都被累加,只有在进行条件判断时才对m取模。这意味着sum的值可能会迅速增长,尤其是当word表示一个非常大的数时。这种方法的缺点是,如果word足够长,就可能导致sum变量溢出(超过Go语言整数类型可以表示的最大值),从而导致错误的结果。
  • 第二个代码中,每次循环迭代都会先计算(sum*10 + int(num-‘0’)),然后立即对m取模来更新sum。这种方法的优点是sum的值永远不会超过m的值,有效避免了整数溢出的问题,尤其是当处理非常大的数字时。这也意味着即使是非常长的word字符串,这段代码也能正确运行而不会因为整数溢出而失效。

总结

  • 第一个方法在进行模运算之前允许sum增长,可能会在处理非常大的数字时遇到整数溢出问题。
  • 第二个方法通过在每次迭代中立即对m取模来避免整数溢出,使得算法对于任意长度的输入都是安全的。
  • 因此,第二个方法更健壮,特别是当处理大数或者不确定输入大小时。

相关文章:

2575. 找出字符串的可整除数组(Go语言)

https://leetcode.cn/problems/find-the-divisibility-array-of-a-string/ 在看题解之前,我的代码是以下这样: package mainimport ("fmt" )func main() {fmt.Println(divisibilityArray("998244353", 3)) }func divisibilityArray…...

Redis与 Memcache区别

Redis与 Memcache区别 1 , Redis 和 Memcache 都是将数据存放在内存中,都是内存数据库。不过 Memcache 还可用于缓存 其他东西,例如图片、视频等等。 2 , Memcache 仅支持key-value结构的数据类型,Redis不仅仅支持简单的key-value类型的数据&…...

#QT(智能家居界面-界面切换)

1.IDE:QTCreator 2.实验 3.记录 (1)创建一个新界面(UI界面) (2)可以看到新加入一个ui文件,双击打开,设置窗口大小与登录界面一致 (3)加入几个PUS…...

js拓展-内置对象

目录 1. 数组对象 1.1 数组的四种方式 1.2 JS中数组的特点 1.3 常用方法 2. 日期对象 2.1 日期对象的创建 2.2 日期对象的方法 2.3 案例:输出现在的时间 3. 全局对象 3.1 字符串转换成数字类型 3.2 编码解码函数 1. 数组对象 注:数组在JS中是一…...

【李沐精读系列】GPT、GPT-2和GPT-3论文精读

论文: GPT:Improving Language Understanding by Generative Pre-Training GTP-2:Language Models are Unsupervised Multitask Learners GPT-3:Language Models are Few-Shot Learners 参考:GPT、GPT-2、GPT-3论文精读…...

Libevent的使用及reactor模型

Libevent 是一个用C语言编写的、轻量级的开源高性能事件通知库,主要有以下几个亮点:事件驱动( event-driven),高性能;轻量级,专注于网络,不如 ACE 那么臃肿庞大;源代码相当精炼、易读…...

查看Linux服务器配置

# chkconfig --list # 列出所有系统服务 # chkconfig --list | grep on # 列出所有启动的系统服务 # ifconfig # 查看所有网络接口的属性 # iptables -L # 查看防火墙设置 # route -n # 查看路由表 # netstat -lntp # 查看所有监听端口 # netstat -antp # 查看所有已经建立的连…...

【机器学习】包裹式特征选择之递归特征添加法

🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进…...

解决cs不能生成Linux木马的问题

要解决的问题:众所周知,msf上面的shell或者是其他的shell想反弹给cs默认情况下是只支持windows的,因为cs的监听模块默认没有linux的,但是有些主机就是用linux搭建的,这可怎么办呢。就要用到一个插件CrossC2。 下载插件…...

vue3组件通信方式

不管是vue2还是vue3,组件通信方式很重要,不管是项目还是面试都是经常用到的知识点。 vue2组件通信方式 props:可以实现父子组件、子父组件、甚至兄弟组件通信 自定义事件:可以实现子父组件通信 全局事件总线$bus:可以实现任意组件通信 pubsub:发布订阅模式实现任意组件通信…...

前端实现生成图片并批量下载,下载成果物是zip包

简介 项目上有个需求,需要根据表单填写一些信息,来生成定制的二维码图片,并且支持批量下载二维码图片。 之前的实现方式是直接后端生成二维码图片,点击下载时后端直接返回一个zip包即可。但是项目经理说后端实现方式每次改个东西…...

android 快速实现 圆角矩形控件 及 圆形控件

1.自定义RoundImageView package com.examle.widget;import android.content.Context; import android.content.res.TypedArray; import android.graphics.Bitmap; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import an…...

【Python】外网远程登录访问jupyter notebook+pycharm使用ipython

第一步:创建python虚拟环境 conda create -n py3610 python3.6.10第二步:安装ipython pip install ipython pip install ipython notebook第三步:创建 IPython Notebook 服务器配置文件 # 进入python交互shell,设置密码 >&…...

error:0308010C:digital envelope routines::unsupported

error:0308010C:digital envelope routines::unsupported 报错原因解决方案方案一:降低node版本在17以下指定node版本 mac node版本降级 mac切换node版本 方案二:启用legacy OpenSSL provider方案三:配置package.json文件拓展:pac…...

Vue前端的工作需求

加油&#xff0c;新时代打工人&#xff01; 需求&#xff1a; 实现带树形结构的表格&#xff0c;父数据显示新增下级&#xff0c;和父子都显示编辑。 技术&#xff1a; Vue3 Element Plus <template><div><el-table:data"tableData"style"width…...

97. 常用的HTTP服务压测工具

文章目录 导言一、ab二、wrk三、go-wrk 导言 在项目正式上线之前&#xff0c;我们通常需要通过压测来评估当前系统能够支撑的请求量、排查可能存在的隐藏bug&#xff0c;同时了解了程序的实际处理能力能够帮我们更好的匹配项目的实际需求(服务器实例个数&#xff0c;如需要部署…...

活动预告|听云猿生数据创始人 CEO 曹伟分享云数据库行业十余年经验总结

3月16日&#xff0c;KubeBlocks 将携手 OceanBase 开源社区、AutoMQ 带来《LLMs 时代下的企业数据管理与降本增效之路》主题 meetup&#xff0c;扫描下方二维码&#xff0c;即刻报名&#x1f447;。 云猿生数据创始人 & CEO 曹伟将带来《KubeBlocks&#xff1a;把所有数据…...

数仓实战——京东数据指标体系的构建与实践

目录 一、如何理解指标体系 1.1 指标和指标体系的基本含义 1.2 指标和和标签的区别 1.3 指标体系在数据链路中的位置和作用 1.4 流量指标体系 1.5 指标体系如何向上支撑业务应用 1.6 指标体系背后的数据加工逻辑 二、如何搭建和应用指标体系 2.1 指标体系建设方法—OS…...

Alias许可配置

在数字化时代&#xff0c;软件已成为企业竞争的核心要素。然而&#xff0c;随着软件市场的日益复杂&#xff0c;如何合理配置和使用软件许可&#xff0c;已成为企业亟待解决的问题。Alias许可配置服务&#xff0c;凭借其卓越的功能和性能&#xff0c;帮助企业优化软件使用&…...

【读书笔记】针对ICS的ATTCK矩阵详解(一)

Techniques - ICS | MITRE ATT&CKhttps://attack.mitre.org/techniques/ics/ 一、初始访问&#xff08;Initial Access&#xff09; 该阶段&#xff1a;攻击者正在尝试进入ICS环境。 初始访问包括攻击者可能用作入口向量&#xff0c;从而可以在 ICS 环境中获得初始立足点的…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...