医院网站建设利法拉网络/seo哪个软件好
1.VGG背景
2. VGGNet模型结构
3. 特点(创新、优缺点及新知识点)
一、VGG背景
VGGNet是2014年ILSVRC(ImageNet Large Scale Visual Recognition Challenge大规模视觉识别挑战赛)竞赛的第二名,解决ImageNet中的1000类图像分类和定位问题,第一名是GoogLeNet。
VGG全称是Visual Geometry Group,因为是由Oxford的Visual Geometry Group提出的。AlexNet问世之后,很多学者通过改进AlexNet的网络结构来提高自己的准确率,主要有两个方向:小卷积核和多尺度。而VGG的作者们则选择了另外一个方向,即加深网络深度。主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。
他们以 7.32% 的错误率赢得了 2014 年 ILSVRC 分类任务的亚军(冠军由 GoogLeNet 以 6.65% 的错误率夺得)和 25.32% 的错误率夺得定位任务(Localization)的第一名(GoogLeNet 错误率为 26.44%)。VGG可以看成是加深版本的AlexNet. 都是conv layer + FC layer。
补充:
ImageNet Large Scale Visual Recognition Challenge 是李飞飞等人于2010年创办的图像识别挑战赛,自2010起连续举办8年,极大地推动计算机视觉发展。比赛项目涵盖:图像分类(Classification)、目标定位(Object localization)、目标检测(Object detection)、视频目标检测(Object detection from video)、场景分类(Scene classification)、场景解析(Scene parsing)。竞赛中脱颖而出大量经典模型: alexnet,vgg,googlenet,resnet,densenet等。
二、VGGNet模型结构
1.相关论文
论文全名:Very deep convolutional networks for large-scale image recognition
论文下载地址https://arxiv.org/pdf/1409.1556.pdf
VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。在此过程中,作者做了六组实验,对应6个不同的网络模型,这六个网络深度逐渐递增的同时,也有各自的特点。实验表明最后两组,即深度最深的两组16和19层的VGGNet网络模型在分类和定位任务上的效果最好。
2.各组的区别:
A:起始。
A-LRN:加了LRN,这是AlexNet里提出来的。
B:加了两个卷积层。
C: 进一步叠加了3个卷积层,但是加的是1 * 1的kernel。
D:将C中1 * 1的卷积核替换成了3 * 3的,即VGG16。
E:在D的基础上进一步叠加了3个3*3卷积层,即VGG19。
VGG16包含了16个隐藏层(13个卷积层和3个全连接层),如上图中的D列所示。
VGG19包含了19个隐藏层(16个卷积层和3个全连接层),如上图中的E列所示。
所有卷积层有相同的配置,即卷积核大小为3x3,步长为1,填充为1;共有5个最大池化层,大小都为2x2,步长为2;共有三个全连接层,前两层都有4096通道,第三层共1000路及代表1000个标签类别;最后一层为softmax层;所有隐藏层后都带有ReLU非线性激活函数;
三、特点(创新及新知识点)
作者就用验证集当做测试集来观察模型性能。这里作者使用两种方式来评估模型在测试集(实际的验证集)的性能表现。LRN层无性能增益(A和A-LRN)、深度增加,分类性能提高(A、B、C、D、E)、conv1x1的非线性变化有作用(C和D)、多小卷积核比单大卷积核性能好(B)。
对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。
简单来说,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。
VGG16相比AlexNet的一个改进是,采用连续的几个3x3的卷积核(步长=1,padding=0),代替AlexNet中的较大卷积核(11x11,7x7,5x5)。
2、小池化核
相比AlexNet的3x3的池化核,VGG全部为2x2的池化核;
3、层数更深、特征图更宽
把网络层数加到了16、19层(不包括池化层和softmax层),而AlexNet是8层结构。基于前两点外,由于卷积核专注于扩大通道数、池化核专注于缩小宽和高,使得模型架构上更深更宽的同时,计算量的增加放缓。使网络有更大感受野的同时能降低网络参数,同时多次使用ReLu激活函数有更多的线性变换,学习能力更强。训练时将同一张图片缩放到不同的尺寸,在随机剪裁到224224的大小,能够增加数据量。预测时将同一张图片缩放到不同尺寸做预测,最后取平均值。网络测试阶段,全连接换成卷积。网络测试阶段,将训练阶段的3个全连接替换为3个卷积,测试重新用训练时的参数,使得测试得到的全卷积网络因为没有全连接的限制,因而可以接收任意宽或高为的输入。数据增强:方法一:针对位置 训练阶段:按比例缩放图片至最小边为S,随机位置裁剪出224224区域,随机进行水平翻转。方法二:针对颜色 修改RGB通道的像素值,实现颜色扰动,S设置方法:固定值:固定为256,或384,随机值:每个batch的S在[256, 512],实现尺度扰动。
4、VGG优点
VGGNet的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。几个小滤波器(3x3)卷积层的组合比一个大滤波器(5x5或7x7)卷积层好:验证了通过不断加深网络结构可以提升性能。
5、VGG缺点
VGG耗费更多计算资源,并且使用了更多的参数(这里不是3x3卷积的锅),导致更多的内存占用(140M)。其中绝大多数的参数都是来自于第一个全连接层。VGG可是有3个全连接层啊!
参考文章https://www.sohu.com/a/214925396_633698
相关文章:

深度学习卷积神经网络CNN之 VGGNet模型主vgg16和vgg19网络模型详解说明(理论篇)
1.VGG背景 2. VGGNet模型结构 3. 特点(创新、优缺点及新知识点) 一、VGG背景 VGGNet是2014年ILSVRC(ImageNet Large Scale Visual Recognition Challenge大规模视觉识别挑战赛)竞赛的第二名,解决ImageNet中的1000类图…...

三:BLE协议架构简介
低功耗蓝牙体系整体架构说明1. PHY(物理层)2. LL(链路层)3. HCI(主机与控制器通信接口)4. L2CAP(逻辑链路控制及适配协议)5. ATT(属性协议)6. GATT(通用属性规范)7. GAP(通用访问规范)8. SM(安全管理)整体架构说明 架构层说明PHY1. 物理层2. 控制射频的发送和接收LL1. 链路层2.…...

小型双轮差速底盘双灰度循迹功能的实现
1. 功能说明 在机器人车体上安装2个 灰度传感器 ,实现机器人按照下图所指定的路线进行导航运动,来模拟仓库物流机器人按指定路线行进的工作过程。 2. 使用样机 本实验使用的样机为R023e样机。 3. 功能实现 3.1 电子硬件 在这个示例中,我们采…...

电子签名?玩具罢了!
需要的前置知识:简单的canvas绘制线路过程 let canvas document.getElementById(id); //id为canvas标签元素的id,或通过其它方法获取标签 let ctx canvas.getContext(2d); //规定为2d绘制图片,即确定为2d画笔 ctx.strokeStyle "whit…...

【Spring Boot读取配置文件的方式】
Spring Boot 支持多种读取配置文件的方式,常用的方式有以下三种: application.properties: Spring Boot 默认会读取该文件作为应用的配置文件。可以在 src/main/resources 目录下创建该文件,并在其中配置应用的属性。 applicat…...

java学习路线规划
java学习路线规划 一、写在前面 兄弟,我整理了一下关于自己之前学习java的一些方向,给你归纳在这里,有空就来看看,希望对你有帮助。 二、java基础篇 1、认识java 了解java历史,大概看看发展史,安装…...

格密码学习笔记(二):连续极小、覆盖半径和平滑参数
文章目录最短距离和连续极小值距离函数和覆盖半径格的平滑参数致谢最短距离和连续极小值 除了行列式,格的另一个基本量是格上最短非零向量的长度,即格中最短距离,其定义为 λ1minx,y∈L,x≠y∥x−y∥minz∈L,z≠0∥z∥.\begin{aligned} …...

ios 通过搜索设备MAC地址绑定
最近做了一个物联网项目,涉及到了设备绑定配网这块,需要了解一下iOS BLE与设备绑定的相关知识点,第一次接触蓝牙相关的项目,所以开始熟悉蓝牙的相关信息。没有去深入研究BabyTooth库,只是感觉CoreBluetooth已经让我更好的理解整个流程这个物联网项目的设备绑定流程是…...

Python实现人脸识别,进行视频跟踪打码,羞羞的画面统统打上马赛克
哈喽兄弟们,我是轻松~ 今天我们来实现用Python自动对视频打马赛克前言准备工作代码实战效果展示最后前言 事情是这样的,昨天去表弟家,用了下他的电脑,不小心点到了他硬盘里隐藏的秘密,本来我只需要用几分钟电脑的&…...

vcf bed起始位置是0还是1
VCF 起始位置为1, POS - position: The reference position, with the 1st base having position 1. Positions are sorted numerically, in increasing order, within each reference sequence CHROM. It is permitted to have multiple records with the same POS. Telome…...

Hexo+live2d | 如何把live2d老婆放进自己的博客
参考:Hexo添加Live2D看板娘最新教程live2d-widgetlive2d-widget-models网页/博客Hexo添加live2d游戏角色看板娘,简易添加,碧蓝航线等live2d新型游戏角色模型(moc3)live2d-moc3jsdelivr方法1可以直接去看参考文章的第一部分的第一篇…...

【微信小程序】-- 页面导航 -- 导航传参(二十四)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

Pytorch学习笔记#2: 搭建神经网络训练MNIST手写数字数据集
学习自https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html 导入并预处理数据集 pytorch中数据导入和预处理主要用torch.utils.data.DataLoader 和 torch.utils.data.Dataset Dataset 存储样本及其相应的标签,DataLoader在数据上生成一个可迭…...

C语言 猜名次、猜凶手、杨辉三角题目详解
猜名次题目:5位运动员参加了10米台跳水比赛,有人让他们预测比赛结果:A选手说:B第二,我第三;B选手说:我第二,E第四;C选手说:我第一,D第二ÿ…...

蚁群算法负荷预测
%% 清空环境变量 clc clear close all format compact %% 网络结构建立 %% 清空环境变量 clc clear close all format compact %% 网络结构建立 %读取数据 dataxlsread(天气_电量_数据.xlsx,C12:J70);%前7列为每个时刻的发电量 最后列为天气 for i1:58 input(i,:)[data…...

ubuntu添加系统服务实现开机root权限运行
需求 开机自动运行程序(或脚本),需要以root权限运行但不输入密码,也不能将密码写入文件。 环境 Ubuntu 20.04 解决方案 添加系统服务,然后通过systemctl控制。 操作步骤 假设目标程序为/home/xxx/test 1、创建service配置文件 [Unit…...

【阅读笔记】你不知道的Javascript--类与类型委托3
目录类一些常见原理混入行为委托委托理论类与对象更妙的设计与语法类型冷门关键词typeof 防范机制值原生函数访问内部属性类 一些常见原理 在继承或者实例化时,JavaScript 的对象机制并不会自动执行复制行为; 多态:JS 中的多态,…...

文件服务设计
一、需求背景 文件的上传、下载功能是软件系统常见的功能,包括上传文件、下载文件、查看文件等。例如:电商系统中需要上传商品的图片、广告视频,办公系统中上传附件,社交类系统中上传用户头像等等。文件上传下载大致流程为&#…...

【批处理脚本】-1.22-字符串界定符号 ““
"><--点击返回「批处理BAT从入门到精通」总目录--> 共3页精讲(列举了所有字符串界定符号 ""的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,…...

【Flutter·学习实践·UI篇】基础且重要的UI知识
前言 参考学习官网:《Flutter实战第二版》 学习前先记住:Flutter 中万物皆为Widget,心中默念3次以上铭记于心。 这一点和开发语言Dart的变量一切皆是对象的概念,相互对应。 Widget 在前面的介绍中,我们知道在Flutt…...

【OpenCV】车牌自动识别算法的设计与实现
写目录一. 🦁 设计任务说明1.1 主要设计内容1.1.1 设计并实现车牌自动识别算法,基本功能要求1.1.2 参考资料1.1.3 参考界面布局1.2 开发该系统软件环境及使用的技术说明1.3 开发计划二. 🦁 系统设计2.1 功能分析2.1.1 车辆图像获取2.1.2 车牌…...

SpringBoot发送邮件
目录1. 获取授权码2. jar包引入3. 配置application4. 代码实现1. 获取授权码 以126邮箱为例,点开设置,选择POP3/SMTP/IMAP 开启POP3/SMTP服务,新增授权密码 扫码二维码,发送要求的短信内容到指定的号码即可,然后会返回…...

BigInteger类和BigDecimal类的简单介绍
文章目录📖前言:🎀BigInteger类和BigDecimal类的由来🎀BigDecimal类的优点🎀BigDecimal类容易引发的错误🏅处理方法📖前言: 本篇博客主要介绍BigInteger类和BigDecimal类的用途及常…...

mysql五种索引类型---实操版本
背景 最近学习了Mysql的索引,索引对于Mysql的高效运行是非常重要的,正确的使用索引可以大大的提高MySql的检索速度。通过索引可以大大的提升查询的速度。不过也会带来一些问题。比如会降低更新表的速度(因为不但要把保存数据还要保存一下索引…...

【微信小程序】-- 页面导航 -- 编程式导航(二十三)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

路由追踪工具 traceroute 使用技巧
路由追踪工具 traceroute 使用技巧路由追踪工作原理路由追踪实例1. 如何运行 traceroute2. 禁用 IP 地址和主机名映射3. 配置回复等待时间4. 配置每一跳的查询次数5. 配置 TTL 值我想知道一个数据包从出发地到目的地所遵循的路由,即所有转发实体(中间的路…...

NGINX学习笔记 - 一篇了解NGINX的基本概念(一)
NGINX是什么? NGINX是一款由俄罗斯人伊戈尔赛索耶夫使用C语言开发的、支持热部署的、轻量级的WEB服务器/反向代理服务器/电子邮件代理服务器,因为占用内存较少,启动极快,高并发能力强,所以在互联网项目中广泛应用。可…...

Spring-Cloud-Gateway的过滤器的执行顺序问题
过滤器的种类 Spring-Cloud-Gateway中提供了3种类型的过滤器,分别是:路由过滤器、Default过滤器和Global过滤器。 路由过滤器和Default过滤器 路由过滤器和Default过滤器本质上是同一种过滤器,只不过作用范围不一样,路由过滤器…...

Android性能优化的底层逻辑
前言性能优化仿佛成了每个程序员开发的必经之路,要想出人头地,与众不同,你还真需要下点功夫去研究Android的性能优化,比如说,从优化应用启动、UI加载、再到内存、CPU、GPU、IO、还有耗电等等,当你展开一个方…...

Gradle+SpringBoot多模块开发
关于使用Gradle结合SpringBoot进行多模块开发。 本来是打算使用buildSrc之类的,但是感觉好像好麻烦,使用这种方法就可以实现,没必要采用其他的。 我不怎么会表述,可能写的跟粑粑一样,哈哈哈哈 这是我的项目地址。 存在…...