一文看懂softmax loss
文章目录
- softmax loss
- 1.softmax函数
- 2.交叉熵损失函数
- 3.softmax loss损失函数(重点)
- 4.带有temperature参数的softmax loss
- 参考
softmax loss
1.softmax函数
softmax函数是一种常用的激活函数,通常用于多分类任务中。给定一个向量,softmax函数将每个元素转化为一个介于0~1之间的概率值,并且所有元素的概率之和为1。softmax函数的定义如下:
softmax ( z ) i = e z i ∑ j = 1 K e z j \operatorname{softmax}(z)_i=\frac{e^{z_i}}{\sum_{j=1}^Ke^{z_j}} softmax(z)i=∑j=1Kezjezi
其中 z z z是输入向量, K K K是向量的维度。softmax函数的作用是将输入的原始分数(通常称之为logits1)转化为表示各个类别概率的分布。
2.交叉熵损失函数
交叉熵损失函数是用来衡量两个概率分布之间的差异性的一种度量方式。在深度学习中,常用交叉熵损失函数来衡量模型预测的概率分布与真实标签的分布之间的差异,从而作为优化目标来训练模型。
对于二分类问题,交叉熵损失函数的定义如下:
Binary Cross Entropy Loss = − 1 N ∑ i = 1 N [ y i log ( p i ) + ( 1 − y i ) log ( 1 − p i ) ] \text{Binary Cross Entropy Loss}=-\frac1N\sum_{i=1}^N\left[y_i\log(p_i)+(1-y_i)\log(1-p_i)\right] Binary Cross Entropy Loss=−N1i=1∑N[yilog(pi)+(1−yi)log(1−pi)]
其中 y i y_i yi是真实标签, p i p_i pi是模型预测的概率值, N N N是样本数。
对于多分类问题,交叉熵损失函数的定义如下:
Cross Entropy Loss = − 1 N ∑ i = 1 N ∑ k = 1 K y i , k log ( p i , k ) \text{Cross Entropy Loss}=-\frac1N\sum_{i=1}^N\sum_{k=1}^Ky_{i,k}\log(p_{i,k}) Cross Entropy Loss=−N1i=1∑Nk=1∑Kyi,klog(pi,k)
其中 y i , k y_{i,k} yi,k是第 i i i 个样本属于第 k k k 个类别的真实标签, p i , k p_{i,k} pi,k 是模型预测的第 i i i 个样本属于第 k k k 个类别的概率值, N N N 是样本数, K K K 是类别数。
3.softmax loss损失函数(重点)
softmax loss是深度学习中最常见的损失函数,完整的叫法为 Cross-entropy loss with softmax。softmax loss 由Fully Connected Layer,Softmax Function和Cross-entropy Loss组成。

softmax loss就是将softmax函数和交叉熵损失函数结合在了一起。
Softmax Loss = − 1 N ∑ i = 1 N ∑ k = 1 K y i , k log ( exp ( z i , k ) ∑ j = 1 K exp ( z i , j ) ) \text{Softmax Loss}=-\frac1N\sum_{i=1}^N\sum_{k=1}^Ky_{i,k}\log\left(\frac{\exp(z_{i,k})}{\sum_{j=1}^K\exp(z_{i,j})}\right) Softmax Loss=−N1i=1∑Nk=1∑Kyi,klog(∑j=1Kexp(zi,j)exp(zi,k))
其中 y i , k y_{i,k} yi,k 是第 i i i 个样本属于第 k k k 个类别的真实标签,当样本 i i i 属于类别 k k k 时, y i , k = 1 y_{i,k}=1 yi,k=1;否则, y i , k = 0 y_{i,k}=0 yi,k=0。 z i , k z_{i,k} zi,k 是样本 i i i 关于类别 k k k 的得分logits, N N N 是样本数, K K K 是类别数。
4.带有temperature参数的softmax loss
带有温度参数 T T T 的 softmax loss的损失函数如下:
Loss = − 1 N ∑ i = 1 N ∑ k = 1 K y i , k log ( exp ( z i , k / T ) ∑ j = 1 K exp ( z i , j / T ) ) \text{Loss}=-\frac1N\sum_{i=1}^N\sum_{k=1}^Ky_{i,k}\log\left(\frac{\exp(z_{i,k}/T)}{\sum_{j=1}^K\exp(z_{i,j}/T)}\right) Loss=−N1i=1∑Nk=1∑Kyi,klog(∑j=1Kexp(zi,j/T)exp(zi,k/T))
参考
1.Large-Margin Softmax Loss for Convolutional Neural Networks
2.Softmax Loss推导过程以及改进
3.深度学习中的温度参数(Temperature Parameter)是什么?
😃😃😃
logits就是一个向量,该向量下一步通常被输入到激活函数中,如softmax、sigmoid中。 ↩︎
相关文章:
一文看懂softmax loss
文章目录 softmax loss1.softmax函数2.交叉熵损失函数3.softmax loss损失函数(重点)4.带有temperature参数的softmax loss参考 softmax loss 1.softmax函数 softmax函数是一种常用的激活函数,通常用于多分类任务中。给定一个向量࿰…...
用C语言链表实现图书管理
#include <stdio.h> #include <stdlib.h> #include <string.h> struct ListNode {int val;//编号char title[50];//书名float price;//价格struct ListNode* next; };// 在尾部插入节点 struct ListNode* insertAtTail(struct ListNode* head, int val,char …...
Hello,Spider!入门第一个爬虫程序
在各大编程语言中,初学者要学会编写的第一个简单程序一般就是“Hello, World!”,即通过程序来在屏幕上输出一行“Hello, World!”这样的文字,在Python中,只需一行代码就可以做到。我们把这第一个爬虫就称之为“HelloSpider”&…...
AI实景无人自动直播间怎么搭建?三步教你轻松使用
最近很多朋友看到AI自动直播带货玩法,也想开启自己的自动直播间,但还是有些问题比较担心,这种自动讲解、自动回复做带货的直播间是不是很麻烦? 实景无人自动直播 实际上这种直播间搭建相当简单便捷!今天跟着笔者&…...
wechaty微信机器人,当机器人被@时做出响应
https://wechaty.js.org/zh/docs/api/message?_highlightmessage if (await msg.mentionSelf()) {console.log(this message were mentioned me! [You were mentioned] tip ([有人我]的提示))await room.say(不要微信机器人)} 我开发的人工智能学习网站: https://…...
8.6 Springboot项目实战 Spring Cache注解方式使用Redis
文章目录 前言一、配置Spring Cache1. @EnableCaching2. 配置CacheManager3. application.properties配置二、使用注解缓存数据1. 使用**@Cacheable** 改造查询代码2. 使用**@CacheEvict** 改造更新代码前言 在上文中我们使用Redis缓存热点数据时,使用的是手写代码的方式,这…...
rust引用本地crate
我们可以动态引用crate,build时从crate.io下载,但可能因无法下载导致build失败。首次正常引用三方crate,build时自动下载的crate源码,我们将其拷贝到固定目录中; build后可在RustRover中按住Ctrl键,在crat…...
分布式(计算机算法)
目录 分布式计算 分布式编辑 分布式和集群 分布式和集群的应用场景 分布式应用场景 集群应用场景 哪种技术更优、更快、更好呢 性能 稳定性 以下概念来源于百度百科 分布式计算 分布式计算是近年提出的一种新的计算方式。所谓分布式计算就是在两个或多个软件互相共享信息…...
CSS概念及入门
文章目录 1. CSS 概念及入门1.1. 简介1.2. 组成1.2.1. 选择器1.2.2. 属性 1.3. 区别 2. CSS 引入方式2.1. 行内样式2.1.1. 语法2.1.2. 特点 2.2. 内部样式2.2.1. 语法2.2.2. 特点 2.3. 外部样式2.3.1. 特点 2.4. 三种引入优先级 1. CSS 概念及入门 1.1. 简介 CSS 的全称为&am…...
用 C 语言模拟 Rust 的 Result 类型
在 Rust 中,Result<T, E> 类型是一个枚举,它表示一个操作可能成功并返回一个值 T,或者失败并返回一个错误 E。在 C 语言中,没有直接对应的 Result 类型,但我们可以使用结构体和枚举来模拟它。 下面是一个用 C 语…...
git基础命令(四)之分支命令
目录 基础概念git branch-r-a-v-vv-avv重命名分支删除分支git branch -h git checkout创建新的分支追踪远程分支同时切换到该分支创建新的分支并切换到该分支撤销对文件的修改,恢复到最近的提交状态:丢弃本地所有修改git checkout -h git merge合并指定分…...
redis瘦身版
线程模型 纯内存操作/非阻塞io多路复用/单线程避免多线程频繁上下文切换 基于Reactor模式开发了网络事件处理器:文件事件处理器,单线程的 io多路监听多个socket,据socket事件类型选择对应的处理器,高性能网络通信模型,…...
使用ChatGPT高效完成简历制作[中篇]-有爱AI实战教程(五)
演示站点: https://ai.uaai.cn 对话模块 官方论坛: www.jingyuai.com 京娱AI 导读:在使用 ChatGPT 时,当你给的指令越精确,它的回答会越到位,举例来说,假如你要请它帮忙写文案,如果没…...
论文阅读——SpectralGPT
SpectralGPT: Spectral Foundation Model SpectralGPT的通用RS基础模型,该模型专门用于使用新型3D生成预训练Transformer(GPT)处理光谱RS图像。 重建损失由两个部分组成:令牌到令牌和频谱到频谱 下游任务:...
Redis的过期键是如何处理的?过期键的删除策略有哪些?请解释Redis的内存淘汰策略是什么?有哪些可选的淘汰策略?
Redis的过期键是如何处理的?过期键的删除策略有哪些? Redis的过期键处理是一个重要的内存管理机制,它确保在键过期后能够释放相应的内存空间。Redis对过期键的处理主要依赖于其删除策略,这些策略包括被动删除(惰性删除…...
软件测试方法 -- 等价类边界值
测试用例的定义 测试用例是为了特定的目的而设计的一组测试输入、执行条件和预期的结果,以便测试是否满足某个特定需求。通过大量的测试用例来检验软件的运行效果,他是指导测试工作进行的依据。 下面我们介绍几种常用的黑盒测试方法 等价类划分法 定…...
LeetCode——贪心算法(Java)
贪心算法 简介[简单] 455. 分发饼干[中等] 376. 摆动序列[中等] 53. 最大子数组和[中等] 122. 买卖股票的最佳时机 II[中等] 55. 跳跃游戏 简介 记录一下自己刷题的历程以及代码。写题过程中参考了 代码随想录的刷题路线。会附上一些个人的思路,如果有错误…...
【MySQL】2. 数据库基础
1. 数据库基础(重点) 1.1 什么是数据库 存储数据用文件就可以了,为什么还要弄个数据库? 文件保存数据有以下几个缺点: 文件的安全性问题 文件不利于数据查询和管理 文件不利于存储海量数据 文件在程序中控制不方便 数据库存储介…...
《如何使用C语言去下三子棋?》
目录 一、环境配置 二、功能模块 1.打印菜单 2.初始化并打印棋盘 3、行棋 3.1玩家行棋 3.2电脑行棋 4、判断是否和棋 5.判赢 三、代码实现 1、test.c文件 2、game.c文件 3、game.h文件 一、环境配置 本游戏用到三个文件,分别是两个源文件test.c game.c 和…...
Linux——线程(4)
在上一篇博客中,我讲述了在多执行流并发访问共享资源的情况下,如何 使用互斥的方式来保证线程的安全性,并且介绍了Linux中的互斥使用的是 互斥锁来实现互斥功能,以及它的原理,在文章的结尾我提出了一个问题 用来引出同…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
Docker、Wsl 打包迁移环境
电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本: 2.2.4.0 内核版本: 5.15.153.1-2 WSLg 版本: 1.0.61 MSRDC 版本: 1.2.5326 Direct3D 版本: 1.611.1-81528511 DXCore 版本: 10.0.2609…...
Electron简介(附电子书学习资料)
一、什么是Electron? Electron 是一个由 GitHub 开发的 开源框架,允许开发者使用 Web技术(HTML、CSS、JavaScript) 构建跨平台的桌面应用程序(Windows、macOS、Linux)。它将 Chromium浏览器内核 和 Node.j…...
