当前位置: 首页 > news >正文

画图实战-Python实现某产品全年销量数据多种样式可视化

画图实战-Python实现某产品全年销量数据多种样式可视化

  • 学习心得
  • Matplotlib说明
    • 什么是Matplotlib?
    • Matplotlib特性
    • Matplotlib安装
  • 产品订单量-折线图
    • 某产品全年订单量数据
    • 数据提取和分析
    • 绘制折线图
  • 产品订单&销售额-条形图
    • 某产品全年订单&销售额数据
    • 绘制条形图
  • 某产品xx-直方图
  • 某产品xx-散点图
  • 某产品xx-饼图
  • 某产品xx-多图效果
  • 总结

学习心得

  • 有时候我们需要对某些数据进行分析,得到一些可视化效果图,而这些效果图可以直观展示给我们数据的变化趋势;
  • 比如某产品的月销量数据、销售额的地区分布、销售增长和季节的变化情况、产品的贡献度分析等等;
  • 本文主要针对某产品全年销量数据,绘制各种不同样式的图表,以不同样式展示数据;
  • 学习本文建议对Python的matplotlib第三库有一定的了解。

Matplotlib说明

什么是Matplotlib?

  • Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形;
  • Matplotlib可生成绘图、直方图、功率谱、条形图、错误图、散点图、折线图等;
  • Matplotlib是Python生态系统的一个重要组成部分,是用于可视化的绘图库;
  • Matplotlib提供了一整套和matlab相似的命令API和可视化界面,可以生成出版质量级别的精美图形。

Matplotlib特性

  • Matplotlib图表中的元素包含以下内容:

A、X轴和Y轴;
B、X轴和Y轴刻度;
C、X轴和Y轴标签;
D、绘图区域。

  • 关于hold属性:

A、hold属性默认为True,可在一幅图中绘制多个曲线;
B、将hold属性修改为False,每一个plot都会覆盖前面的plot(这种方法不推荐,建议使用默认的)。

  • 常用方法:

A、可使用grid方法为图添加网格线;
B、还可以使用其他方法,如axis方法、xlim方法、ylim方法、legend方法;

  • 关于配置方面:

matplotlib配置信息是从配置文件读取的。在配置文件中可以为matplotlib的几乎所有属性指定永久有效的默认;
主要为永久配置和动态配置。

Matplotlib安装

直接使用pip安装即可:

pip install matplotlib

产品订单量-折线图

某产品全年订单量数据

  • 以下是某产品全年的销量数据:
某产品JanFebMarAprMayJunJulAugSepOctNovDec
订单量(indent)15334250115220866659433950
退货量(returned)61318235598423125221724
  • 全年12个月数据中,每个月对应有产品的订单量和退货量。

数据提取和分析

  • 我们可以把月份用以下变量表示:
month = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]print(f"月份为:{month}")
# 输出:月份为:['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

复制运行

  • 产品对应的销量分两种,一种是订单量,一种是退货量,可用两个变量来存放数据:
# 订单量
indent = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]# 退货量
returned = [6, 13, 18, 23, 55, 98, 42, 31, 25, 22, 17, 24]print(f"每月订单量为:{indent}")
print(f"每月退货量为:{returned}")

绘制折线图

  • 折线图中我们绘制两条折线,一条是每月的退货量,一条是每月的订单量;
  • 而折线就是坐标组成,这里就需要多个两个坐标,比如x1、y1、x2、y2;
  • 针对我们提供的数据,可以把坐标定义为:

x1 = month y1 = indent
x2= month y2 = returned

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as pltmonth = ["Jan", "Feb", "Mar", "Apr","May", "Jun", "Jul", "Aug","Sep", "Oct", "Nov", "Dec"]
print(f"月份为:{month}")# 订单量
indent = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]# 退货量
returned = [6, 13, 18, 23, 55, 98, 42, 31, 25, 22, 17, 24]
print(f"每月订单量为:{indent}")
print(f"每月退货量为:{returned}")# 绘制折线图
plt.plot(month, indent, label='订单量',linewidth=2, color='r', marker='o',markerfacecolor='blue', markersize=8)plt.plot(month, returned, label='退货量',linewidth=2, color='y', marker='o',markerfacecolor='blue', markersize=8)plt.xlabel('月份')
plt.ylabel('数量')
plt.title('某产品全年订单销售情况')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行上边代码后折线图的效果为:

请在此添加图片描述

产品订单&销售额-条形图

某产品全年订单&销售额数据

  • 以下是某产品全年的销量数据:
订单量(indent/m1)10/530/750/970/1190/13110/15130/17150/19
退货量(returned/m2)20/340/560/780/910011120/13140/15160/17
  • 图中的意思为对应的订单量的销售额和对应的退货量的价格。

绘制条形图

  • 条形图中我们绘制双条形,一条是每月的退货量及对应价格,一条是每月的订单量和销售额;
  • 针对我们提供的数据,可以把坐标定义为:

x1 = indent y1 = m1
x2= returned y2 = m2

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as plt# 订单量
indent = [10, 30, 50, 70, 90, 110, 130, 150]
# 销售额
m1 = [5, 7, 9, 11, 13, 15, 17, 19]# 退货量
returned = [20, 40, 60, 80, 100, 120, 140, 160]
# 价格
m2 = [3, 5, 7, 9, 11, 13, 15, 17]# 绘制折线图
plt.bar(indent, m1, width=3, label='订单量-销售额', color='r', )
plt.bar(returned, m2, width=3, label='退货量-价格', color='y')plt.xlabel('数量')
plt.ylabel('价格')
plt.title('某产品全年订单&销售额情况')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行以上代码后效果图为:

请在此添加图片描述

注意:后续的数据和操作逻辑和前边的一样,为了快速了解其使用,不再描述详细的数据,仅用示例说明。

某产品xx-直方图

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as pltdata = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]
x = range(0, 100, 2)# 绘制直方图
plt.hist(data, x, rwidth=3, label='直方图', color='y')plt.xlabel('X')
plt.ylabel('Y')
plt.title('直方图')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行代码后效果如下:

请在此添加图片描述

某产品xx-散点图

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as pltdata = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]
x = range(0, len(data))# 绘制散点图
plt.scatter(x, data, label='散点图', s=15)plt.xlabel('X')
plt.ylabel('Y')
plt.title('散点图')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行代码后效果为:

请在此添加图片描述

某产品xx-饼图

  • 对应代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
subprocess.check_call([sys.executable, "-m", "pip", "install", "numpy"])
import matplotlib.pyplot as plt
import numpy as npdata = np.array([10, 20, 15, 15, 5, 5, 30])plt.pie(data,labels=['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7'],colors=["#8B008B", "#FF1493", "#4B0082", "#B0C4DE", "#E1FFFF", "#008080", "#00FF7F"],explode=(0, 0, 0.3, 0, 0, 0.2, 0), autopct='%.2f%%',)
plt.title('饼图')
plt.rcParams['font.sans-serif'] = ['SimHei']
# plt.show()
plt.savefig("plot.jpg")
  • 运行代码效果为:

请在此添加图片描述

某产品xx-多图效果

  • 对应代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
subprocess.check_call([sys.executable, "-m", "pip", "install", "numpy"])
import matplotlib.pyplot as plt
import numpy as npx = np.array([10, 50])
y = np.array([10, 80])
plt.subplot(2, 2, 1)
plt.plot(x, y)
plt.title("图1")x = np.array([10, 20, 30, 40])
y = np.array([10, 30, 50, 110])
plt.subplot(2, 2, 2)
plt.plot(x, y)
plt.title("图2")x = np.array([10, 20, 30, 40])
y = np.array([50, 60, 70, 80])
plt.subplot(2, 2, 3)
plt.plot(x, y)
plt.title("图3")x = np.array([20, 25, 30, 35])
y = np.array([40, 45, 50, 55])
plt.subplot(2, 2, 4)
plt.plot(x, y)
plt.title("图4")plt.suptitle("多图显示")
plt.rcParams['font.sans-serif'] = ['SimHei']
#plt.show()
plt.savefig("plot.jpg")
  • 运行代码后的效果为:

请在此添加图片描述

总结

Python实现某产品全年销量数据多种样式可视化,主要是应用了python的matplotlib库进行绘制各种图表,除了以上的几种图表,还有柱状图、网格图等等。学习的时候建议使用真实的数据,可以真正达到分析问题的效果。

相关文章:

画图实战-Python实现某产品全年销量数据多种样式可视化

画图实战-Python实现某产品全年销量数据多种样式可视化 学习心得Matplotlib说明什么是Matplotlib?Matplotlib特性Matplotlib安装 产品订单量-折线图某产品全年订单量数据数据提取和分析绘制折线图 产品订单&销售额-条形图某产品全年订单&销售额数据绘制条形…...

YOLOv9详解

1.概述 在逐层进行特征提取和空间转换的过程中,会损失大量信息,例如图中的马在建模过程中逐渐变得模糊,从而影响到最终的性能。YOLOv9尝试使用可编程梯度信息PGI解决这一问题。 具体来说, PGI包含三个部分,&#xff0…...

CRON 定时任务

检测是否安装了 cron systemctl status crond 如果没有安装使用 sudo yum install cronie 编辑 crontab -e * * * * * php /path/your.php Esc键 然后输入 :q 退出 :wq 保存并退出 第一个 * 表示分钟,表示每分钟执行一次。第二个 * 表示小时,表示每…...

环境安装篇 之 Kind 搭建 kubernetes 测试集群

云原生学习路线导航页(持续更新中) 本文是 环境安装 系列文章,介绍 使用Kind工具 快速安装 kubernetes 测试集群的详细步骤 1.Kind简介 Kind 是一个使用 Docker 容器“节点”运行本地 Kubernetes 集群的工具。Kind 主要用于测试kubernetes本…...

每日五道java面试题之mybatis篇(四)

目录: 第一题. 映射器#{}和${}的区别第二题. 模糊查询like语句该怎么写?第三题. 在mapper中如何传递多个参数?第四题. Mybatis如何执行批量操作第五题 MyBatis框架适用场景 第一题. 映射器#{}和${}的区别 #{}是占位符,预编译处理;${}是拼接…...

camunda流程引擎的插件如何使用

camunda工作流引擎是一个开放的架构,除了流程引擎默认提供的功能外,开发者可以通过流程插件机制,对流程引擎功能进行扩展。即流程引擎插件是流程引擎配置的扩展。插件必须提供 ProcessEnginePlugin 接口的实现。 下面以全局任务事件监听器为…...

Vue打包问题汇总:legacy、runtime.js

问题一:Vue3.x的版本中build后dist文件中出现legacy的js文件 解决办法是添加兼容的浏览器 package.json "browserslist": ["> 1%","last 2 versions","not dead","not ie 11" ]参考 Vue3.x的版本中build后…...

挑战杯 车位识别车道线检测 - python opencv

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) …...

c++面经

1. 僵尸进程 僵尸进程(Zombie Process)在操作系统中指的是那些已经执行完毕,但其父进程尚未对其进行善后处理(例如读取子进程的状态信息或者执行回收资源的操作)的进程。在Unix和类Unix系统&#xff0…...

js中副作用的消除还解决了并行计算带来的竞争问题,具体是如何解决的

在JavaScript中,副作用是指对外部环境产生的可观察的变化,例如修改全局变量、修改DOM元素等。副作用的存在可能导致代码的可维护性和可测试性下降,并且在并行计算中可能引发竞争问题。 不纯的函数有可能访问同一块资源,如果先后调…...

3/14/24数据结构、线性表

目录 数据结构 数据结构三要素 逻辑结构 存储结构 数据运算 时间复杂度 空间复杂度 线性表 线性表定义 静态分配 动态分配 线性表插入 线性表删除 十天的时间学完了C语言督学课程,最后终于是可以投入到408的科目学习当中。关于数据结构和算法的学习很多部…...

软件测试面试200问,面试看这就够了。。。

🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 Part1 1、你的测试职业发展是什么? 测试经验越多,测试能力越高。所以我…...

力扣● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

● 583. 两个字符串的删除操作 注意审题: 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 删除最少的字符使两者相同,说明留下来的就是最大公共子序列。不要求…...

Git速成

文章目录 Git 分布式版本控制工具课程内容1. 前言1.1 什么是Git1.2 使用Git能做什么 2. Git概述2.1 Git简介2.2 Git下载与安装 3. Git代码托管服务3.1 常用的Git代码托管服务3.2 码云代码托管服务3.2.1 注册码云账号3.2.2 登录码云3.2.3 创建远程仓库3.2.4 邀请其他用户成为仓库…...

一文看懂softmax loss

文章目录 softmax loss1.softmax函数2.交叉熵损失函数3.softmax loss损失函数(重点)4.带有temperature参数的softmax loss参考 softmax loss 1.softmax函数 softmax函数是一种常用的激活函数,通常用于多分类任务中。给定一个向量&#xff0…...

用C语言链表实现图书管理

#include <stdio.h> #include <stdlib.h> #include <string.h> struct ListNode {int val;//编号char title[50];//书名float price;//价格struct ListNode* next; };// 在尾部插入节点 struct ListNode* insertAtTail(struct ListNode* head, int val,char …...

Hello,Spider!入门第一个爬虫程序

在各大编程语言中&#xff0c;初学者要学会编写的第一个简单程序一般就是“Hello, World!”&#xff0c;即通过程序来在屏幕上输出一行“Hello, World!”这样的文字&#xff0c;在Python中&#xff0c;只需一行代码就可以做到。我们把这第一个爬虫就称之为“HelloSpider”&…...

AI实景无人自动直播间怎么搭建?三步教你轻松使用

最近很多朋友看到AI自动直播带货玩法&#xff0c;也想开启自己的自动直播间&#xff0c;但还是有些问题比较担心&#xff0c;这种自动讲解、自动回复做带货的直播间是不是很麻烦&#xff1f; 实景无人自动直播 ​ 实际上这种直播间搭建相当简单便捷&#xff01;今天跟着笔者&…...

wechaty微信机器人,当机器人被@时做出响应

https://wechaty.js.org/zh/docs/api/message?_highlightmessage if (await msg.mentionSelf()) {console.log(this message were mentioned me! [You were mentioned] tip ([有人我]的提示))await room.say(不要微信机器人)} 我开发的人工智能学习网站&#xff1a; https://…...

8.6 Springboot项目实战 Spring Cache注解方式使用Redis

文章目录 前言一、配置Spring Cache1. @EnableCaching2. 配置CacheManager3. application.properties配置二、使用注解缓存数据1. 使用**@Cacheable** 改造查询代码2. 使用**@CacheEvict** 改造更新代码前言 在上文中我们使用Redis缓存热点数据时,使用的是手写代码的方式,这…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...