深度学习之扩散模型(Diffusion model)
代码解析:正向扩散过程和加噪演示
-
引言
这段代码实现了一个正向扩散过程和加噪演示的功能。通过生成一个特定形状的数据集,并在每个时间步长上应用正向扩散过程和加噪过程,最终展示了数据点在空间中的演变过程。 -
数据集生成
通过 make_swiss_roll 函数生成一个类似瑞士卷的数据集,数据集具有特定的形状和噪声。在这个示例中,数据集被缩放和裁剪,以便更好地展示正向扩散和加噪的效果。 -
超参数设定
设定了一系列超参数,包括时间步数 num_steps 和用于控制正向扩散过程的 alphas 和 betas。这些超参数决定了正向扩散过程中的权重变化,并影响数据点在空间中的演变轨迹。 -
正向扩散过程
定义了一个函数 q_x,用于执行正向扩散过程。该函数接受初始数据点和时间步长作为输入,并根据预先设定的超参数计算出新的数据点。在每个时间步长上,根据权重 alphas 和 betas,将初始数据点与噪声相结合,生成新的数据点。 -
加噪演示
通过循环迭代,每隔一定的时间步长,在图表中展示了数据点的演变过程。在每个演示步骤中,通过调用 q_x 函数生成新的数据点,并在图表中以散点图的形式展示。这样可以清晰地观察到数据点在空间中的变化,从而更好地理解加噪的效果。 -
结论
这段代码展示了如何使用正向扩散过程和加噪过程来生成和演示数据集的变化。通过调整超参数和观察结果,可以更好地理解数据的分布和特征,为后续的数据分析和建模工作提供参考。
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll # 导入 make_swiss_roll 函数# 构建我们需要的数据集
s_curve, _ = make_swiss_roll(10**4, noise=0.1)
s_curve = s_curve[:, [0, 2]] / 10.0
dataset = torch.Tensor(s_curve).float()# 确定时间步数
num_steps = 100# 确定alpha、beta超参数的值
betas = torch.linspace(-6, 6, num_steps)
betas = torch.sigmoid(betas) * (0.5e-2 - 1e-5) + 1e-5
alphas = 1 - betas
alphas_prod = torch.cumprod(alphas, 0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(), alphas_prod[:-1]], 0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)# 正向扩散过程——根据x_0和noise计算出任意时刻的x_t值
def q_x(x_0, t):noise = torch.randn_like(x_0)alphas_t = alphas_bar_sqrt[t]alphas_1_m_t = one_minus_alphas_bar_sqrt[t]return (alphas_t * x_0 + alphas_1_m_t * noise)# 演示加噪过程,每20步展示一次结果
num_shows = 20
fig, axs = plt.subplots(2, 10, figsize=(28, 3))
for i in range(num_shows):j = i // 10k = i % 10q_i = q_x(dataset, torch.tensor([i * num_steps // num_shows]))axs[j, k].scatter(q_i[:, 0], q_i[:, 1], color='red', edgecolor='white')axs[j, k].set_axis_off()axs[j, k].set_title(f'$q(\\mathbf{{x}}_{{{i * num_steps // num_shows}}})$')
plt.show()
相关文章:
深度学习之扩散模型(Diffusion model)
代码解析:正向扩散过程和加噪演示 引言 这段代码实现了一个正向扩散过程和加噪演示的功能。通过生成一个特定形状的数据集,并在每个时间步长上应用正向扩散过程和加噪过程,最终展示了数据点在空间中的演变过程。 数据集生成 通过 make_swiss…...
Tomcat Session ID---会话保持
简单拓补图 一、负载均衡、反向代理 7-1nginx代理服务器配置 [rootdlnginx ~]#yum install epel-release.noarch -y ###安装额外源[rootdlnginx ~]#yum install nginx -y[rootdlnginx ~]#systemctl start nginx.service[rootdlnginx ~]#systemctl status nginx.service [ro…...
Session会话绑定
1.需求原因 用户的请求,登录的请求,经过负载均衡后落到后面的web服务器上,登录的状态/信息也会记录在web服务器上,就会导致不通的web服务器上,登录状态不统一,造成用户频繁需要登录 2.目标:如何实现会话保持/会话共享 方案一:登录状态写入cookie中.(wor…...
win7、win10、win11 系统能安装的.net framework 版本以
win7、win10、win11 系统能安装的.net framework 版本分别是多少?以及能安装的最高版本是多少? 以下是各Windows系统能够安装和支持的.NET Framework版本及其最高可安装版本的概述: Windows 7: 自带 .NET Framework 3.5.1&#x…...
RediSearch比Es搜索还快的搜索引擎
1、介绍 RediSearch是一个Redis模块,为Redis提供查询、二次索引和全文搜索。要使用RediSearch,首先要在Redis数据上声明索引。然后可以使用重新搜索查询语言来查询该数据。RedSearch使用压缩的反向索引进行快速索引,占用内存少。RedSearch索…...
mybatis-plus 的saveBatch性能分析
Mybatis-Plus 的批量保存saveBatch 性能分析 目录 Mybatis-Plus 的批量保存saveBatch 性能分析背景批量保存的使用方案循环插入使用PreparedStatement 预编译优点:缺点: Mybatis-Plus 的saveBatchMybatis-Plus实现真正的批量插入自定义sql注入器定义通用…...
python异常:pythonIOError异常python打开文件异常
1.python读取不存在的文件时,抛出异常 通过 open()方法以读“r”的方式打开一个 abc.txt 的文件(该文件不存在),执行 open()打开一个不存在的文件时会抛 IOError 异常,通过 Python 所提供的 try...except...语句来接收…...
电话机器人语音识别用哪家更好精准度更高。
语音识别系统的选择取决于你的具体需求,包括但不限于识别精度、速度、易用性、价格等因素。以下是一些在语音识别领域表现较好的公司和产品: 科大讯飞:科大讯飞是中国最大的语音识别技术提供商之一,其语音识别技术被广泛应用于各…...
【Unity动画】Unity如何导入序列帧动画(GIF)
Unity 不支持GIF动画的直接播放,我们需要使用序列帧的方式 01准备好序列帧 02全部拖到Unity 仓库文件夹中 03全选修改成精灵模式Sprite 2D ,根据需要修改尺寸,点击Apply 04 创建一个空物体 拖动序列上去 然后全选所有序列帧,拖到这个空物体…...
uniapp APP 上传文件
/*** 上传文件*/uploadPhoneFile:function(callback,params {}) {let fileType [.pdf,.doc,.xlsx,.docx,.xls]// #ifdef APP-PLUSplus.io.chooseFile({title: 选择文件, filetypes: [doc, docx], // 允许的文件类型 multiple: false, // 是否允许多选 },(e)>{const tem…...
arcgis数据导出到excel
将arcgis属性数据导出到excel: 1) 工具箱\系统工具箱\Conversion Tools.tbx\Excel\Excel 转表 2)用excel打开导出的图层文件中后缀为.dbf的数据(方便快捷,但是中文易乱码)...
吴恩达深度学习环境本地化构建wsl+docker+tensorflow+cuda
Tensorflow2 on wsl using cuda 动机环境选择安装步骤1. WSL安装2. docker安装2.1 配置Docker Desktop2.2 WSL上的docker使用2.3 Docker Destop的登陆2.4 测试一下 3. 在WSL上安装CUDA3.1 Software list needed3.2 [CUDA Support for WSL 2](https://docs.nvidia.com/cuda/wsl-…...
R语言:microeco:一个用于微生物群落生态学数据挖掘的R包:第七:trans_network class
# 网络是研究微生物生态共现模式的常用方法。在这一部分中,我们描述了trans_network类的所有核心内容。 # 网络构建方法可分为基于关联的和非基于关联的两种。有几种方法可以用来计算相关性和显著性。 #我们首先介绍了基于关联的网络。trans_network中的cal_cor参数…...
ubuntu下在vscode中配置matplotlibcpp
ubuntu下在vscode中配置matplotlibcpp 系统:ubuntu IDE:vscode 库:matplotlib-cpp matplotlibcpp.h文件可以此网址下载:https://github.com/lava/matplotlib-cpp 下载的压缩包中有该头文件,以及若干实例程序。 参考…...
Vue面试题,背就完事了
1.vue的生命周期有哪些及每个生命周期做了什么? Vue.js 的生命周期可以分为以下几个核心阶段,每个阶段都伴随着特定的钩子函数(生命周期钩子)来执行相应的操作: 创建阶段: beforeCreate:实例被创建后、数…...
centos创建并运行一个redis容器 并支持数据持久化
步骤 : 创建redis容器命令 docker run --name mr -p 6379:6379 -d redis redis-server --appendonly yes 进入容器 : docker exec -it mr bash 链接redis : redis-cli 查看数据 : keys * 存入一个数据 : set num 666 获取数据 : get num 退出客户端 : exit 再退…...
nvm安装和使用保姆级教程(详细)
一、 nvm是什么 : nvm全英文也叫node.js version management,是一个nodejs的版本管理工具。nvm和npm都是node.js版本管理工具,为了解决node.js各种版本存在不兼容现象可以通过它可以安装和切换不同版本的node.js。 二、卸载之前安装的node: …...
跳绳计数,YOLOV8POSE
跳绳计数,YOLOV8POSE 通过计算腰部跟最初位置的上下波动,计算跳绳的次数...
阿里云ecs服务器配置反向代理上传图片
本文所有软件地址: 链接:https://pan.baidu.com/s/12OSFilS-HNsHeXTOM47iaA 提取码:dqph 为什么要使用阿里云服务器? 项目想让别人通过外网进行访问就需要部署到我们的服务器当中 1.国内知名的服务器介绍 国内比较知名的一些…...
免费阅读篇 | 芒果YOLOv8改进110:注意力机制GAM:用于保留信息以增强渠道空间互动
💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 该专栏完整目录链接: 芒果YOLOv8深度改进教程 该篇博客为免费阅读内容,直接改进即可🚀🚀…...
GetLastError()返回值及含义
https://www.cnblogs.com/ericsun/archive/2012/08/10/2631808.html 〖0〗-操作成功完成。 〖1〗-功能错误。 〖2〗-系统找不到指定的文件。 〖3〗-系统找不到指定的路径。 〖4〗-系统无法打开文件。 〖5〗-拒绝访问。 〖6〗-句柄无效。 〖7〗-存储控制块被损坏。 〖8〗-存储空…...
k8s admin 用户生成token
k8s 版本 1.28 创建一个admin的命名空间 admin-namespce.yaml kind: Namespace apiVersion: v1 metadata: name: admin labels: name: admin 部署进k8s kubectl apply -f admin-namespce.yaml 查看k8s namespace 的列表 kubectl get namespace查看当前生效的…...
【vscode】vscode重命名变量后多了很多空白行
这种情况,一般出现在重新安装 vscode 后出现。 原因大概率是语言服务器没设置好或设置对。 以 Python 为例,到设置里搜索 "python.languageServer",将 Python 的语言服务器设置为 Pylance 即可。...
深度学习实战模拟——softmax回归(图像识别并分类)
目录 1、数据集: 2、完整代码 1、数据集: 1.1 Fashion-MNIST是一个服装分类数据集,由10个类别的图像组成,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫…...
vue实现element-UI中table表格背景颜色设置
目前在style中设置不了,那么就在前面组件给设置上 :header-cell-style"{ color: #ffffff, fontSize: 14px, backgroundColor: #0E2152 }" :cell-style"{ color: #ffffff, fontSize: 14px, backgroundColor: #0E2152 }"...
RabbitMQ学习总结-消息的可靠性
保证MQ消息的可靠性,主要从三个方面:发送者确认可靠性,MQ确认可靠性,消费者确认可靠性。 1.发送者可靠性:主要依赖于发送者重试机制,发送者确认机制; 发送者重试机制,其实就是配置…...
2024蓝桥杯每日一题(BFS)
备战2024年蓝桥杯 -- 每日一题 Python大学A组 试题一:母亲的奶牛 试题二:走迷宫 试题三:八数码1 试题四:全球变暖 试题五:八数码2 试题一:母亲的奶牛 【题目描述】 农夫约…...
力扣思路题:最长特殊序列1
int findLUSlength(char * a, char * b){int alenstrlen(a),blenstrlen(b);if (strcmp(a,b)0)return -1;return alen>blen?alen:blen; }...
c# 的ref 和out
在C#中,ref和out是用于方法参数的关键字,它们都允许在方法调用中对参数进行修改。 ref关键字用于传递参数的引用。当使用ref关键字声明一个参数时,实际上是在告诉编译器此参数在调用方法之前必须被赋值。ref参数传递的是参数的引用地址&…...
ONLYOFFICE文档8.0全新发布:私有部署、卓越安全的协同办公解决方案
ONLYOFFICE文档8.0全新发布:私有部署、卓越安全的协同办公解决方案 文章目录 ONLYOFFICE文档8.0全新发布:私有部署、卓越安全的协同办公解决方案摘要📑引言 🌟正文📚一、ONLYOFFICE文档概述 📊二、ONLYOFFI…...
直播网站可以做毕设吗/产品推广的渠道
单例模式是一种常用的软件设计模式,通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统资源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。 看代码: 1 namespace Single…...
外包网站建设公司/软文撰写公司
2019独角兽企业重金招聘Python工程师标准>>> 1、首先查看系统中原有的java版本:java -version;然后用再用:rpm -qa | grep java 命令查看具体的信息,最后用:rpm -e --nodeps java-1.5.0-gcj-1.5.0.0-29.1.el6.x86_64卸…...
做响应网站的素材网站有哪些/nba新闻最新消息
SLAM(Simultaneous Localization and Mapping)也称为CML(concurrent mapping and localization),即同时定位与地图构建。 机器人SLAM问题要解决的是:机器人在未知环境中从未知位置开始移动,在移…...
江苏做网站怎么收费/知名网页设计公司
本篇博客主要优化 MySQL 中的插入操作,核心实现 insert 优化任务。 插入数据 ** load data infile 导入数据** 使用上述命令,可以大幅度提高批量插入数据。 如果希望使用该命令,可以用 show 命令进行测试 show variables like %infile%使用…...
ur电商seo平台价值/怎么做网络推广优化
16 个写代码的好习惯 参考文章: https://mp.weixin.qq.com/s/M6Dj4AcZkCf0f2K7Tle7_Q...
长沙网站建设/优化推广网站推荐
Round1:逻辑结构 都属于线性表,都是线性结构 Round2:存储结构 顺序表的优缺点: 优点: 支持随机存取,存储密度高(只需要存储数据) 缺点: 大片连续空间分配不方便&#…...