当前位置: 首页 > news >正文

MNN Session::resize 之流水线编码(五)

在这里插入图片描述

系列文章目录


MNN createFromBuffer(一)
MNN createRuntime(二)
MNN createSession 之 Schedule(三)
MNN createSession 之创建流水线后端(四)
MNN Session::resize 之流水线编码(五)
MNN Session 创建执行器(六)


文章目录

  • 系列文章目录
  • 1、createSession
    • 1.1 createMultiPathSession
    • 1.1.1 Session::resize
    • 1.1.1.1 Pipeline::encode
    • 1.1.1.1.1 GeometryComputerUtils::shapeComputeAndGeometryTransform
    • 1.1.1.1.1.1 SizeComputer::computeOutputSize
    • 1.1.1.1.1.1.1 SizeComputerSuite::search
    • 1.1.1.1.1.1.2 ConvolutionSizeComputer::onComputeSize
    • 1.1.1.1.1.2 GeometryComputer::search
    • 1.1.1.1.1.2.1 GeometryComputerManager::search
    • 1.1.1.1.1.3 GeometryConv2D::onRecompute
    • 1.1.1.2 Command 命令
    • 1.1.1.3 CommandBuffer


1、createSession

在这里插入图片描述

    依据 ScheduleConfig 和 RuntimeInfo 创建会话。

// source/core/Interpreter.cpp
Session* Interpreter::createSession(const ScheduleConfig& config, const RuntimeInfo& runtime) {return createMultiPathSession({config}, runtime);
}

1.1 createMultiPathSession

// source/core/Interpreter.cpp
Session* Interpreter::createMultiPathSession(const std::vector<ScheduleConfig>& configs, const RuntimeInfo& runtime) {// ...auto result = newSession.get();auto validForResize = info.validForResize;if (validForResize && mNet->modes.inputMode == Session_Input_Inside && mNet->modes.resizeMode == Session_Resize_Direct) {result->resize();}if ((!mNet->cacheFile.empty()) && (!valid) && mNet->modes.backendMode == Session_Backend_Fix) {// Try to save extra cacheauto buffer = result->getCache();if (buffer.first != nullptr && buffer.second > 0) {MNN_PRINT("Write cache to %s, size = %zu\n", mNet->cacheFile.c_str(), buffer.second);writeCacheFile(mNet, buffer);mNet->lastCacheSize = buffer.second;// Write CachecacheMode = cacheMode | 2;}}// Reset cacheresult->loadCache(nullptr, 0);mNet->sessions.emplace_back(std::move(newSession));#ifdef MNN_INTERNAL_ENABLEDint precision = BackendConfig::Precision_Normal;if (nullptr != configs[0].backendConfig) {precision = configs[0].backendConfig->precision;}int mode = configs[0].mode;mNet->sessionInfo.insert(std::make_pair(result, std::make_tuple(precision, mode)));if (shouldLog(FREQ_HIGH)) {std::map<std::string, std::string> metrics = mNet->basicLogginData;metrics.emplace("UUID", mNet->uuid);metrics.emplace("Time", std::to_string((float)_timer.durationInUs() / 1024.0f));metrics.emplace("Backend", std::to_string(configs[0].type));metrics.emplace("Precision", std::to_string(precision));metrics.emplace("Mode", std::to_string(mode));metrics.emplace("Cache", std::to_string(cacheMode));metrics.emplace("CacheSize", std::to_string((float)(mNet->lastCacheSize / 1024.0f)));metrics.emplace("ModelSize", std::to_string ((float)mNet->buffer.size() / 1024.0f / 1024.0f));metrics.emplace("Usage", std::to_string((int) mNet->net->usage()));metrics.emplace("API", "Interpreter::createMultiPathSession");logAsync(metrics);}
#endif // MNN_INTERNAL_ENABLEDreturn result;
}

1.1.1 Session::resize

// source/core/Session.cpp
ErrorCode Session::resize() {
#ifdef LOG_VERBOSEfor (auto& iter : mInputs) {auto& inputTensor = iter.second;MNN_PRINT("before resize, input name:%s, ptr:%p, hostPtr:%p,  shape:", iter.first.c_str(), inputTensor, inputTensor->host<void>());inputTensor->printShape();MNN_PRINT("\n");}
#endifbool permitCodegen = mCodegenMode == Interpreter::Session_Codegen_Enable;bool firstMalloc = false;if (mNeedResize) {bool debug = mCallBackMode == Interpreter::Session_Debug;// mPipelines 类型为 std::vector<std::shared_ptr<Pipeline>>for (auto& iter : mPipelines) {auto error = iter->encode(debug, permitCodegen);if (NO_ERROR != error) {return error;}}mNeedResize = false;mNeedMalloc = true;firstMalloc = true;}if (mNeedMalloc) {// Set needResize = true for easy for judge in runSession when errormNeedResize = true;// Turn Pipeline to Command Buffer and Malloc resource// TODO: Separate Schedule and Mallocbool forbidReplace = permitCodegen;if (mInfo.constReplaceBackend != nullptr) {forbidReplace = true;}for (auto& iter : mPipelines) {auto error = iter->allocMemory(firstMalloc, forbidReplace);if (NO_ERROR != error) {return error;}}if(mMemoryUsageMode == Interpreter::Session_Memory_Collect) {#ifdef LOG_VERBOSEfloat memory = 0.0f;#endiffor (auto& iter : mRuntime.first) {iter.second->onGabageCollect(0);#ifdef LOG_VERBOSEmemory += iter.second->onGetMemoryInMB();#endif}#ifdef LOG_VERBOSEFUNC_PRINT_ALL(memory, f);#endif}mNeedMalloc = false;mNeedResize = false;}#ifdef LOG_VERBOSEMNN_PRINT("session after resize\n");for (auto& iter : mOutputs) {auto& outputTensor = iter.second;MNN_PRINT("output name:%s, ptr:%p,shape:", iter.first.c_str(), outputTensor);outputTensor->printShape();MNN_PRINT("\n");}
#endifreturn NO_ERROR;
}

1.1.1.1 Pipeline::encode

BackendCache、OpCacheInfo

// source/core/Pipeline.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
//   struct BackendCache {
//      Backend::Info info;
//      BackendConfig config;
//      std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>> cache;
//      bool needComputeShape = true;
//      bool needComputeGeometry = true;
//      bool reportError = true;
//      std::map<Tensor*, TENSORCACHE> inputTensorCopyCache;
//  };
//
//    /** pipeline info */
//    struct OpCacheInfo {
//        /** op */
//        const Op* op;
//        /** input tensors */
//        std::vector<Tensor*> inputs;
//        /** output tensors */
//        std::vector<Tensor*> outputs;
//        /** schedule type*/
//        Schedule::Type type = Schedule::Type::SEPARATE;
//
//        /**Command buffer for cache*/
//        CommandBuffer cacheBuffer;
//
//        /**Command buffer for execute*/
//        CommandBuffer executeBuffer;
//        
//        std::map<const Op*, std::shared_ptr<Execution>> executionCache;
//    };
//
ErrorCode Pipeline::encode(bool supportDebug, bool permitCodegen) {// mInfo.first.cache 类型为 std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>>// mBackend 创建的后端如(VulkanBackend)auto& mBackend = mInfo.first.cache.first;// mBackupBackend 创建的后备(默认)后端如(CPUBackend)auto& mBackupBackend = mInfo.first.cache.second;// Static Model just copy info to command buffer// mInfo.first 类型为 BackendCache if (!mInfo.first.needComputeGeometry) {for (int i=0; i<mInfo.second.size(); ++i) {auto& info = mInfo.second[i];SharedPtr<Command> cmd = new Command;cmd->op      = info.op;if (cmd->op->type() == OpType_Raster) {// Compability for Origin Static Modelcmd->outputs  = info.outputs;if (TensorUtils::getDescribe(info.outputs[0])->regions.empty() && info.inputs.size() > 0 && TensorUtils::getDescribe(info.inputs[0])->regions.size() > 0) {TensorUtils::getDescribe(info.outputs[0])->regions = std::move(TensorUtils::getDescribe(info.inputs[0])->regions);TensorUtils::setRasterInputs(cmd.get());} else {cmd->inputs  = info.inputs;}} else {cmd->inputs  = info.inputs;cmd->outputs = info.outputs;}info.executeBuffer.command = {cmd};}} else {
#ifndef MNN_BUILD_MINI// mContext 类型为 GeometryComputer::ContextmContext.clear();/** Size Compute and compute Const Begin */auto res = GeometryComputerUtils::shapeComputeAndGeometryTransform(mInfo.second, mContext, mInfo.first.cache.second, mUseGeometry, false, permitCodegen);if (res != NO_ERROR) {return res;}
#endif}// Propagate Scale and insert new commandif (mIsQuantModel && (mBackend->type() == MNN_FORWARD_CPU || mBackend->type() == MNN_FORWARD_CPU_EXTENSION || mBackend->type() == MNN_FORWARD_CUDA || mBackend->type() == MNN_FORWARD_NN || mBackend->type() == MNN_FORWARD_OPENCL)) {// get propagate mapusing PropagateMap = std::map<const MNN::Tensor*, std::set<const MNN::Tensor*>>;PropagateMap forwardMap, backwardMap;auto insertPropagateMap = [](PropagateMap& propagateMap, const Tensor* s, const Tensor* t) {if (propagateMap.find(s) == propagateMap.end()) {propagateMap[s] = std::set<const Tensor*>({t});} else {propagateMap[s].insert(t);}};std::set<OpType> propagateOpTypes = { OpType_Raster, OpType_ReLU, OpType_ReLU6, OpType_Pooling,OpType_Interp, OpType_CropAndResize, OpType_ROIPooling, OpType_Gather,OpType_GatherV2, OpType_GatherV2, OpType_ScatterNd};for (auto& info : mInfo.second) {auto& buffer = info.executeBuffer;for (const auto& cmdP : buffer.command) {auto& cmd = *cmdP;const auto type = cmd.op->type();const auto output = cmd.outputs[0];if (propagateOpTypes.find(type) != propagateOpTypes.end()) {for (auto t : cmd.inputs) {insertPropagateMap(forwardMap, t, output);insertPropagateMap(backwardMap, output, t);}}}}auto getStart = [&forwardMap, &backwardMap](bool forward) {auto& propagateMap = forward ? forwardMap : backwardMap;auto& antiMap = forward ? backwardMap : forwardMap;// delete N->1 Map of Opfor (const auto& iter : antiMap) {if (iter.second.size() > 1) {for (auto t : iter.second) {auto res = propagateMap.find(t);if (res != propagateMap.end()) {propagateMap.erase(res);}}}}std::set<const Tensor*> root, leaf, start;for (const auto& iter : propagateMap) {root.insert(iter.first);for (auto t : iter.second) {leaf.insert(t);}}std::set_difference(root.begin(), root.end(), leaf.begin(), leaf.end(), std::inserter(start, start.begin()));return start;};auto forwardStart = getStart(true);auto backwardStart = getStart(false);// propagate scaleauto propagateScale = [](PropagateMap& propagateMap, std::set<const Tensor*>& start) {std::function<bool(const Tensor*)> scalePropagate = [&propagateMap, &scalePropagate](const Tensor* t) {if (TensorUtils::getDescribe(t)->quantAttr.get() == nullptr) {return false;}if (propagateMap.find(t) == propagateMap.end()) {return false;}bool change = false;for (auto x : propagateMap[t]) {if (TensorUtils::getDescribe(x)->quantAttr != TensorUtils::getDescribe(t)->quantAttr) {TensorUtils::getDescribe(x)->quantAttr = TensorUtils::getDescribe(t)->quantAttr;change = true;}change |= scalePropagate(x);}return change;};bool change = false;for (auto t : start) {change |= scalePropagate(t);}return change;};for (int i = 0; i < 3 && (propagateScale(forwardMap, forwardStart) || propagateScale(backwardMap, backwardStart)); i++);// Insert caststd::map<const Tensor*, Tensor*> cachedCastTensor;for (auto& info : mInfo.second) {auto bufferCommand = std::move(info.executeBuffer.command);bool hasConvert = false;for (auto cmdP : bufferCommand) {auto& cmd = *cmdP;auto& outputs = cmd.outputs;auto& inputs = cmd.inputs;auto opType = cmd.op->type();// Check if need use quant opDataType runType = DataType_DT_FLOAT;bool useQuant = false;if (outputs.size() == 1) {// Quant: output and all input has quantAttr and op supportif (TensorUtils::getDescribe(outputs[0])->quantAttr != nullptr) {useQuant = _supportQuant(cmd.op, inputs, outputs, mBackend->type());}if (useQuant) {for (auto t : inputs) {if (TensorUtils::getDescribe(t)->quantAttr == nullptr) {useQuant = false;break;}}}}if (useQuant) {runType = DataType_DT_INT8;}for (auto o : outputs) {auto quan = TensorUtils::getDescribe(o)->quantAttr;if (nullptr != quan) {TensorUtils::getDescribe(o)->type = runType;}}auto makeCommand = [&cachedCastTensor, &info](CommandBuffer& cmdBuffer, Tensor* input, DataType runType) {if (cachedCastTensor.find(input) != cachedCastTensor.end()) {return cachedCastTensor[input];}std::shared_ptr<Tensor> wrapTensor(new Tensor);TensorUtils::copyShape(input, wrapTensor.get(), true);TensorUtils::setLinearLayout(wrapTensor.get());auto des = TensorUtils::getDescribe(wrapTensor.get());auto originDes = TensorUtils::getDescribe(input);if (originDes->quantAttr != nullptr) {des->quantAttr.reset(new QuantAttr);*des->quantAttr = *originDes->quantAttr;des->type = runType;}cmdBuffer.extras.emplace_back(wrapTensor);SharedPtr<Command> command(new Command);command->inputs = {input};command->outputs = {wrapTensor.get()};info.cacheBuffer.hasWrap = true;flatbuffers::FlatBufferBuilder builder;OpBuilder opB(builder);if (runType == DataType_DT_INT8) {opB.add_type(OpType_FloatToInt8);} else {opB.add_type(OpType_Int8ToFloat);}builder.Finish(opB.Finish());command->buffer.reset(new BufferStorage);command->buffer->storage = builder.ReleaseRaw(command->buffer->allocated_size, command->buffer->offset);command->op = flatbuffers::GetRoot<Op>(command->buffer->buffer());info.executeBuffer.command.emplace_back(std::move(command));return wrapTensor.get();};// judge is it need CastWrapif (OpType_Raster == opType) {for (int v=0; v<cmd.inputs.size(); ++v) {auto input = cmd.inputs[v];bool needCast = CPUBackend::getDataType(input) != runType;if (needCast) {cmd.inputs[v] = makeCommand(info.executeBuffer, input, runType);}}} else {for (int i = 0; i < cmd.inputs.size(); i++) {if (OpCommonUtils::opNeedContent(cmd.op, i) && inputs[i]->getType() != halide_type_of<int>()) {bool needCast = CPUBackend::getDataType(inputs[i]) != runType;if (needCast) {cmd.inputs[i] = makeCommand(info.executeBuffer, inputs[i], runType);}}}}info.executeBuffer.command.emplace_back(cmdP);}}}/** Prepare DebugInfo*/if (supportDebug) {mFlops = 0.0f;int totalIndex = 0;for (auto& info : mInfo.second) {auto& buffer = info.executeBuffer;int index = 0;for (auto& cmdP : buffer.command) {auto& cmd = *cmdP;cmd.info.reset(new UnitInfo);static_cast<UnitInfo*>(cmd.info.get())->setUp(cmd, index++, info.op, totalIndex++);mFlops += cmd.info->flops();}}}
#ifndef MNN_BUILD_MINIelse {for (auto& info : mInfo.second) {auto& buffer = info.executeBuffer;for (auto& cmdP : buffer.command) {mFlops += SizeComputer::computeFlops(cmdP->op, cmdP->inputs, cmdP->outputs);}}}
#endifreturn NO_ERROR;
}

1.1.1.1.1 GeometryComputerUtils::shapeComputeAndGeometryTransform

OpCacheInfo

// source/geometry/GeometryComputerUtils.cpp
//    /** pipeline info */
//    struct OpCacheInfo {
//        /** op */
//        const Op* op;
//        /** input tensors */
//        std::vector<Tensor*> inputs;
//        /** output tensors */
//        std::vector<Tensor*> outputs;
//        /** schedule type*/
//        Schedule::Type type = Schedule::Type::SEPARATE;
//
//        /**Command buffer for cache*/
//        CommandBuffer cacheBuffer;
//
//        /**Command buffer for execute*/
//        CommandBuffer executeBuffer;
//        
//        std::map<const Op*, std::shared_ptr<Execution>> executionCache;
//    };
//
ErrorCode GeometryComputerUtils::shapeComputeAndGeometryTransform(std::vector<Schedule::OpCacheInfo>& infos,GeometryComputer::Context& geoContext,std::shared_ptr<Backend> backupBackend,Runtime::CompilerType compileType, bool skipShapeCompute,bool permitCodegen) {/** Size Compute and compute Const Begin */GeometryComputer::Context ctx(backupBackend);// Size Compute and compute Const// infos 为算子缓存,大小为 171for (int i=0; i<infos.size(); ++i) {// info 类型为 OpCacheInfoauto& info = infos[i];auto& cmdBufferVir = info.executeBuffer;auto& tempBuffer = info.cacheBuffer;// TODO: OptimizecmdBufferVir.command.clear();cmdBufferVir.extras.clear();for (auto t : info.outputs) {if (!TensorUtils::getDescribe(t)->isMutable) {continue;}auto usage = TensorUtils::getDescribe(t)->usage;auto type = TensorUtils::getDescribe(t)->memoryType;MNN_ASSERT(type != Tensor::InsideDescribe::MEMORY_OUTSIDE);MNN_ASSERT(type != Tensor::InsideDescribe::MEMORY_HOST);if (TensorUtils::getDescribeOrigin(t)->mContent->count() > 1) {TensorUtils::getDescribeOrigin(t)->mContent = new Tensor::InsideDescribe::NativeInsideDescribe;t->buffer().dim = TensorUtils::getDescribe(t)->dims;TensorUtils::getDescribe(t)->usage = usage;} else {// 不是不变的和可训练的if (info.type != Schedule::CONSTANT && usage != Tensor::InsideDescribe::TRAINABLE) {TensorUtils::getDescribeOrigin(t)->mContent->setBackend(nullptr);// TODO: If output is static and length larger than new size, don't clear memTensorUtils::getDescribeOrigin(t)->mContent->mem.reset(nullptr);}}}if (!skipShapeCompute) {auto res = SizeComputer::computeOutputSize(info.op, info.inputs, info.outputs);if (!res) {if (info.op->name() != nullptr) {MNN_ERROR("Compute Shape Error for %s\n", info.op->name()->c_str());} else {MNN_ERROR("Compute Shape Error for %d\n", info.op->type());}return COMPUTE_SIZE_ERROR;}// FIXME: Find better way to may compability for old model/**For Convolution of 2D / 3D Tensor(Dense / 1D Convolution)Because of old code, we will acces dim[2] / dim[3] to get width and heightSet the lenght to 1 for compability*/for (auto t : info.outputs) {TensorUtils::adjustTensorForCompability(t);}}if (info.type == Schedule::CONSTANT) {if (_hasZeroShapeOutput(info)) {continue;}ctx.clear();auto geo = GeometryComputer::search(info.op->type(), Runtime::Compiler_Loop);{auto res = geo->onRecompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);if (!res) {tempBuffer.command.clear();tempBuffer.extras.clear();res = geo->onCompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);}if (!res) {MNN_ERROR("Const Folder Error in geometry for %s\n", info.op->name()->c_str());return NOT_SUPPORT;}}GeometryComputerUtils::makeRaster(tempBuffer, cmdBufferVir, ctx);for (auto t : info.outputs) {ctx.getRasterCacheCreateRecursive(t, cmdBufferVir);}for (auto& cp : cmdBufferVir.command) {auto& c = *cp;if (nullptr == c.execution) {c.execution.reset(backupBackend->onCreate(c.inputs, c.outputs, c.op));}auto exe = c.execution;if (nullptr == exe.get()) {MNN_ERROR("Const Folder Error for %s\n", info.op->name()->c_str());return NO_EXECUTION;}for (auto t : c.outputs) {auto des = TensorUtils::getDescribe(t);TensorUtils::setLinearLayout(t);auto res = backupBackend->onAcquireBuffer(t, Backend::STATIC);if (!res) {return OUT_OF_MEMORY;}des->setBackend(backupBackend.get());}backupBackend->onResizeBegin();auto code = exe->onResize(c.inputs, c.outputs);if (NO_ERROR != code) {return NOT_SUPPORT;}code = backupBackend->onResizeEnd();if (NO_ERROR != code) {return NOT_SUPPORT;}code = exe->onExecute(c.inputs, c.outputs);if (NO_ERROR != code) {return NOT_SUPPORT;}}// Clear const commandctx.pushCache(cmdBufferVir);cmdBufferVir.command.clear();cmdBufferVir.extras.clear();}}/** Size Compute and compute Const End *//** Geometry Transform */for (int i=0; i<infos.size(); ++i) {auto& info = infos[i];auto& cmdBufferReal = info.executeBuffer;auto& tempBuffer = info.cacheBuffer;// TODO: Optimizeif (info.type == Schedule::CONSTANT) {continue;}if (_hasZeroShapeOutput(info)) {continue;}auto geo = GeometryComputer::search(info.op->type(), compileType);{bool res = false;if (!tempBuffer.hasWrap) {res = geo->onRecompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);}if (!res) {tempBuffer.command.clear();tempBuffer.extras.clear();res = geo->onCompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);}if (!res) {return NOT_SUPPORT;}tempBuffer.hasWrap = false;GeometryComputerUtils::makeRaster(tempBuffer, cmdBufferReal, geoContext);for (auto t : info.outputs) {auto des = TensorUtils::getDescribe(t);if (des->usage == Tensor::InsideDescribe::OUTPUT || des->usage == Tensor::InsideDescribe::TRAINABLE) {// For output and trainable value, must directly compute the tensorgeoContext.getRasterCacheCreateRecursive(t, cmdBufferReal);}}}}#ifdef MNN_BUILD_CODEGENif(permitCodegen) {#ifdef LOG_VERPOSEMNN_PRINT("infos : [\n");for (auto info : infos) {auto& cmds = info.executeBuffer.command;for (auto cmd : cmds) {MNN_PRINT("\t%s", EnumNameOpType(cmd->op->type()));if(cmd->op->type() == OpType_BinaryOp) {MNN_PRINT(" %d ", cmd->op->main_as_BinaryOp()->opType());}if(cmd->op->type() == OpType_UnaryOp) {MNN_PRINT(" %d ", cmd->op->main_as_UnaryOp()->opType());}MNN_PRINT("\n");}}MNN_PRINT("]\n");MNN_PRINT("==================== opFuse ====================\n");#endifopFuse(infos, geoContext.forwardType(), geoContext.precisionType());#ifdef LOG_VERPOSEMNN_PRINT("infos : [\n");for (auto info : infos) {auto& cmds = info.executeBuffer.command;for (auto cmd : cmds) {MNN_PRINT("\t%s\n", EnumNameOpType(cmd->op->type()));}}MNN_PRINT("]\n");#endif}
#endifreturn NO_ERROR;
}

1.1.1.1.1.1 SizeComputer::computeOutputSize

// source/shape/SizeComputer.cpp
bool SizeComputer::computeOutputSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,const std::vector<Tensor*>& outputs) {auto computeFactory = SizeComputerSuite::get();// When op is nullptr, it means a copy opif (nullptr != op) {// For Loop Opif (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {auto loop = op->main_as_LoopParam();if (loop->extraTensorInfos() == nullptr) {return false;}MNN_ASSERT(loop->extraTensorInfos()->size() == outputs.size());for (int i=0; i<outputs.size(); ++i) {auto des = loop->extraTensorInfos()->GetAs<TensorDescribe>(i);MNN_ASSERT(des->blob() != nullptr);auto blob = des->blob();TensorUtils::getDescribe(outputs[i])->dimensionFormat = blob->dataFormat();outputs[i]->setType(blob->dataType());if (blob->dims() != nullptr) {auto dims = blob->dims()->data();outputs[i]->buffer().dimensions = blob->dims()->size();for (int j=0; j<blob->dims()->size(); ++j) {outputs[i]->setLength(j, dims[j]);}} else {outputs[i]->buffer().dimensions = 0;}}return true;}// Don't support compute shape for control flow opif (op->type() == OpType_While || op->type() == OpType_If) {return false;}// Check -1 inputfor (auto& t : inputs) {for (int i=0; i < t->dimensions(); ++i) {if (t->length(i) < 0) {return false;}}}auto computer = computeFactory->search(op->type());if (nullptr != computer) {bool ret = computer->onComputeSize(op, inputs, outputs);
#ifdef MNN_DEBUG_TENSOR_SIZE_printShape(op, inputs, outputs);
#endifreturn ret;}}// Default Set to the sameif (inputs.size() >= 1 && (outputs.size() == 1 || outputs.size() == inputs.size())) {if (inputs[0] == outputs[0]) {return true;}for (int i=0; i<outputs.size(); ++i) {const auto& ib = inputs[i]->buffer();auto& ob       = outputs[i]->buffer();memcpy(ob.dim, ib.dim, sizeof(halide_dimension_t) * ib.dimensions);ob.dimensions                                         = ib.dimensions;ob.type                                               = ib.type;TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[i])->dimensionFormat;}
#ifdef MNN_DEBUG_TENSOR_SIZE_printShape(op, inputs, outputs);
#endifreturn true;}// Not SupportMNN_PRINT("Can't compute size for %d, name=%s\n", op->type(), op->name() ? op->name()->c_str() : "");return false;
}

1.1.1.1.1.1.1 SizeComputerSuite::search

// source/shape/SizeComputer.cpp
SizeComputer* SizeComputerSuite::search(OpType name) {auto iter = mRegistry[name];if (iter == nullptr) {return nullptr;}return iter;
}

1.1.1.1.1.1.2 ConvolutionSizeComputer::onComputeSize

// source/shape/ShapeConvolution.cpp
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,const std::vector<Tensor*>& outputs) const override {MNN_ASSERT(inputs.size() >= 1);MNN_ASSERT(1 == outputs.size());const Convolution2DCommon* layer = loadCommon(op);int kX = layer->kernelX();int kY = layer->kernelY();auto outputCount = layer->outputCount();if (inputs.size() > 1 && outputCount == 0) {// From TF's multi input convolutionoutputCount = inputs[1]->length(0);kX = inputs[1]->length(3);kY = inputs[1]->length(2);}int kernel_width  = layer->dilateX() * (kX - 1) + 1;int kernel_height = layer->dilateY() * (kY - 1) + 1;int output_width  = 1;int output_height = 1;auto input = inputs[0];if (input->dimensions() <= 1) {// Convolution is not valid for dimension <= 1return false;}auto inputCount = layer->inputCount();bool depthwiseMatch =inputCount == layer->outputCount() &&inputCount == layer->group() &&inputCount == input->channel();int commonChannelMatch =inputCount == inputs[0]->channel() ||            // real relationship in express(inputCount * layer->group() == input->channel()); // standard definition of group convolutionbool valid = inputCount == 0 || depthwiseMatch || commonChannelMatch;// For Tensorflow Group Convolution, the inputCount is the size of filter's input countif (inputs.size() == 1 && !valid && OpType_Convolution == op->type()) {input->printShape();MNN_ERROR("Error for compute convolution shape, inputCount:%d, outputCount:%d, KH:%d, KW:%d, group:%d\ninputChannel: %d, batch:%d, width:%d, height:%d. ""Input data channel may be mismatch with filter channel count\n",layer->inputCount(), outputCount, kY, kX, layer->group(),input->channel(), input->batch(), input->width(), input->height());return false;}if (layer->padMode() == PadMode_SAME) {// Tensorflow padding mode SAMEoutput_width  = ceil((float)input->width() / (float)layer->strideX());output_height = ceil((float)input->height() / (float)layer->strideY());} else if (layer->padMode() == PadMode_VALID) {// Tensorflow padding mode VALIDoutput_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());} else {// Pad_Caffe means User setted paddingif (nullptr != layer->pads()) {MNN_ASSERT(layer->pads()->size() >= 4);int input_width  = input->width() + layer->pads()->data()[1] + layer->pads()->data()[3];int input_height = input->height() + layer->pads()->data()[0] + layer->pads()->data()[2];output_width     = input_width < kernel_width ? 0 : (input_width - kernel_width) / layer->strideX() + 1;output_height    = input_height < kernel_height ? 0 : (input_height - kernel_height) / layer->strideY() + 1;} else {int input_width  = input->width() + layer->padX() * 2;int input_height = input->height() + layer->padY() * 2;output_width     = (input_width - kernel_width) / layer->strideX() + 1;output_height    = (input_height - kernel_height) / layer->strideY() + 1;}}auto& outputBuffer         = outputs[0]->buffer();outputBuffer.dimensions    = input->buffer().dimensions;auto format = TensorUtils::getDescribe(input)->dimensionFormat;outputBuffer.type = input->getType();if (op->main_as_Convolution2D() && op->main_as_Convolution2D()->symmetricQuan() && op->main_as_Convolution2D()->symmetricQuan()->outputDataType() != DataType_DT_INT8) {auto type = op->main_as_Convolution2D()->symmetricQuan()->outputDataType();outputs[0]->setType(type);}outputBuffer.dim[0].extent = input->buffer().dim[0].extent;if (MNN_DATA_FORMAT_NHWC == format) {outputBuffer.dim[3].extent = outputCount;outputBuffer.dim[1].extent = output_height;outputBuffer.dim[2].extent = output_width;} else {outputBuffer.dim[1].extent = outputCount;outputBuffer.dim[2].extent = output_height;outputBuffer.dim[3].extent = output_width;}// MNN_PRINT("outputs: %d, %d, %d, %d\n", outputs[0]->length(0), outputs[0]->length(1), outputs[0]->length(2), outputs[0]->length(3));TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;return true;}

1.1.1.1.1.2 GeometryComputer::search

// source/geometry/GeometryComputer.cpp
const GeometryComputer* GeometryComputer::search(int type, Runtime::CompilerType compType) {return GeometryComputerManager::get()->search(type, compType);
}

1.1.1.1.1.2.1 GeometryComputerManager::search

// source/geometry/GeometryComputer.cppGeometryComputer* search(int type, Runtime::CompilerType compType) {if (Runtime::Compiler_Origin == compType) {return &mDefault;}if (Runtime::Compiler_Loop == compType) {auto iter = mLoopTable[type].get();if (iter != nullptr) {return iter;}}// Geometryauto iter = mTable[type].get();if (iter != nullptr) {// FUNC_PRINT(type);return iter;}return &mDefault;}

1.1.1.1.1.3 GeometryConv2D::onRecompute

virtual bool onRecompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,Context& context, CommandBuffer& res) const override {return false;}

1.1.1.2 Command 命令

// source/core/Command.hpp
struct Command : public RefCount {const Op* op;std::vector<Tensor*> workInputs;std::vector<Tensor*> workOutputs;std::vector<Tensor*> inputs;std::vector<Tensor*> outputs;std::shared_ptr<BufferStorage> buffer;std::shared_ptr<Execution> execution;std::shared_ptr<OperatorInfo> info;#ifdef MNN_BUILD_CODEGENbool canVectorize = false;#endif
};

1.1.1.3 CommandBuffer

// source/core/Command.hpp
struct CommandBuffer {std::vector<SharedPtr<Command>> command;std::vector<std::shared_ptr<Tensor>> extras;bool hasWrap = false;
};

   

相关文章:

MNN Session::resize 之流水线编码(五)

系列文章目录 MNN createFromBuffer&#xff08;一&#xff09; MNN createRuntime&#xff08;二&#xff09; MNN createSession 之 Schedule&#xff08;三&#xff09; MNN createSession 之创建流水线后端&#xff08;四&#xff09; MNN Session::resize 之流水线编码&am…...

2. IS-IS 基础实验

2.1 IS-IS 配置实验 2.1.1 实验介绍 2.1.1.1 学习目标 1. 实现 IS-IS 协议基本配置 2. 实现 IS-IS 协议 DIS 优先级修改 3. 实现 IS-IS 协议网络类型修改 4. 实现 IS-IS 协议外部路由引入 5. 实现 IS-IS 接口 cost 修改 6. 实现 IS-IS 路由渗透配置 2.1.1.2 实验组网介…...

Rust 并行库 crossbeam 的 Channel 示例

示例1 一个不完整的示例&#xff1a; let (tx, rx) channel::unbounded::<Task>(); let mut handlers vec![];for _ in 0..number {let rx rx.clone();let handle thread::spawn(move || {while let Some(task) rx.recv() {task.call_box();}});handlers.push(han…...

缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级的理解

一&#xff1a;缓存雪崩 我们可以简单的理解为&#xff1a;由于原有缓存失效&#xff0c;新缓存未到期间 (例如&#xff1a;我们设置缓存时采用了相同的过期时间&#xff0c;在同一时刻出现大面积的缓存过期)&#xff0c;所有原本应该访问缓存的请求都去查询数据库了&#xff…...

springcloud gateway

一、 predicate : 就是你定义一些规则&#xff0c;如果满足了这些规则&#xff0c;就去找到对应的路由。 对于strip 二、自定义过略器和全局过滤器 约定大于配置&#xff0c;后缀不变&#xff0c;只改前缀 sentinel持久化 三、sentinel quick-start | Sentinel 信号量虽然简…...

JAVA八股day1

遇到的问题 相比于包装类型&#xff08;对象类型&#xff09;&#xff0c; 基本数据类型占用的空间往往非常小为什么说是几乎所有对象实例都存在于堆中呢&#xff1f;静态变量和成员变量、成员变量和局部变量的区别为什么浮点数运算的时候会有精度丢失的风险&#xff1f;如何解…...

探索拓展坞的奥秘:提升电脑接口的无限可能

在数字化时代的浪潮中&#xff0c;电脑已成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;随着外接设备的日益增多&#xff0c;电脑接口的数量和类型往往无法满足我们的需求。这时&#xff0c;拓展坞便应运而生&#xff0c;以其强大的扩展能力和便捷的使用方式&…...

Linux中执行脚本报错(脚本乱码问题)

主要原因是在windows中编译文件格式导致 linux下解决&#xff1a; 方案一&#xff1a; Linux下打开shell文件&#xff0c;用vi/vim命令打开脚本文件&#xff0c;输入“:set fileformatunix”&#xff0c;回车&#xff0c;保存退出。 方案二&#xff1a; yum install -y dos2uni…...

el-table按钮获取当前行元素

el-table按钮获取当前行元素 vue2 <el-table-column label"操作" width"240px"><template slot-scope"scope"><el-button size"mini" click"toItem(scope.row)">用户详情</el-button><el-butto…...

MySQL数据导入的方式介绍

MySQL数据库中的数据导入是一个常见操作&#xff0c;它涉及将数据从外部源转移到MySQL数据库表中。在本教程中&#xff0c;我们将探讨几种常见的数据导入方式&#xff0c;包括它们的特点、使用场景以及简单的示例。 1. 命令行导入 使用MySQL命令行工具mysql是导入数据的…...

构建部署_Docker常用命令

构建部署_Docker常见命令 启动命令镜像命令容器命令 启动命令 启动docker&#xff1a;systemctl start docker 停止docker&#xff1a;systemctl stop docker 重启docker&#xff1a;systemctl restart docker 查看docker状态&#xff1a;systemctl status docker 开机启动&…...

Spring Boot Actuator介绍

大家在yaml中经常见到的这个配置 management: endpoints: web: exposure: #该配置线上需要去掉&#xff0c;会有未授权访问漏洞 include: "*" 他就是Actuator&#xff01; 一、什么是 Actuator Spring Boot Actuator 模块提供了生产级别…...

数据库中DQL、DML、DDL、DCL的概念与区别

目录 DQL (Data Query Language) DML (Data Manipulation Language) DDL (Data Definition Language) DCL (Data Control Language) 数据库语言可以根据其功能被分为几个不同的类别&#xff1a;DQL&#xff08;数据查询语言&#xff09;、DML&#xff08;数据操纵语言&…...

MacOS---设置Java环境变量

介绍 在MacOS系统配置Java环境变量。 操作步骤 第一步&#xff1a;打开.bash_profile文件 vim ~/.bash_profile第二步&#xff1a;添加或修改配置 如果是第一次配置需要添加配置如果是已经配置过想更换其他版本需要修改配置 在文件末尾添加或修改下面的配置 export JAVA…...

使用 Boot Camp 助理查明您的 Mac 需不需要 Windows 安装介质

使用 Boot Camp 助理查明您的 Mac 需不需要 Windows 安装介质 当前的 Mac 机型无需介质即可安装 Windows&#xff0c;也就是说&#xff0c;您不需要用到外置驱动器。较早的 Mac 机型需要用到 USB 驱动器或光盘驱动器。使用 Boot Camp 助理可查明您需要用到什么。 Boot Camp 助…...

KY105 整除问题(用Java实现)

描述 给定n&#xff0c;a求最大的k&#xff0c;使n&#xff01;可以被a^k整除但不能被a^(k1)整除。 输入描述&#xff1a; 两个整数n(2<n<1000)&#xff0c;a(2<a<1000) 输出描述&#xff1a; 一个整数. 示例1 输入&#xff1a; 6 10输出&#xff1a; 1代…...

C++ 接口的实现,及作用通俗理解方式

接口 C中的接口&#xff0c;一般就是指抽象类&#xff0c;是一种用来描述类对外提供的操作、方法或功能的集合——注意&#xff0c;一般只是描述&#xff08;声明&#xff09;&#xff0c;而不对这些方法或功能进行定义实现&#xff0c;通常在类的继承或多态中作为基类使用&am…...

TypeScript:typescript的安装与运行

TypeScript&#xff1a;typescript的安装与运行 1 安装方式 -g全局安装TypeScript&#xff1a; npm install -g typescript2 运行方式 &#xff08;1&#xff09;ts编译成js&#xff0c;使用node命令运行js文件 打开vscode&#xff0c;进入ts文件所在目录下并打开终端term…...

【代码随想录Day27】

Day 27 回溯算法03 今日任务 组合总和 40.组合总和II131.分割回文串 代码实现 组合总和&#xff0c;直接套模板可解 public List<List<Integer>> combinationSum(int[] candidates, int target) {backtracking(candidates, target, 0);return result;}void back…...

【一】【单片机】有关LED的实验

点亮一个LED灯 根据LED模块原理图&#xff0c;我们可以知道&#xff0c;通过控制P20、P21...P27这八个位置的高低电平&#xff0c;可以实现D1~D8八个LED灯的亮灭。VCC接的是高电平&#xff0c;如果P20接的是低电平&#xff0c;那么D1就可以亮。如果P20接的是高电平&#xff0c;…...

面试算法-49-缺失的第一个正数

题目 给你一个未排序的整数数组 nums &#xff0c;请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,0] 输出&#xff1a;3 解释&#xff1a;范围 [1,2] 中的数字都…...

论文笔记:液体管道泄漏综合检测与定位模型

0 简介 An integrated detection and location model for leakages in liquid pipelines 1 摘要 许多液体&#xff0c;如水和油&#xff0c;都是通过管道运输的&#xff0c;在管道中可能发生泄漏&#xff0c;造成能源浪费、环境污染和对人类健康的威胁。本文描述了一种集成的…...

抖音视频批量提取软件|无水印视频下载

抖音视频批量提取软件&#xff0c;让您高效下载精彩内容&#xff01; 您是否经常需要下载抖音视频&#xff0c;但传统的下载方式繁琐且低效&#xff1f;别担心&#xff0c;我们为您提供了一款强大而智能的抖音视频批量提取软件&#xff0c;让您轻松实现下载无水印的精彩内容&am…...

Linux docker1--环境及docker安装

一、基础环境要求 Docker分为ce版本&#xff08;免费&#xff0c;试用7个月&#xff09;和ee版本&#xff08;收费&#xff09;。 最低配置要求&#xff1a;64位操作系统&#xff0c;centOS 7及以上&#xff0c;内核版本不低于3.10 二、部署docker 1、查看服务的基础环境是否满…...

uniapp使用uview - DatetimePicker 时间选择器 /时间戳转化

uniapp使用uview - DatetimePicker 时间选择器 /时间戳转化时转换日期格式后页面仍显示时间戳 单元格内显示时间&#xff0c;点击可出现时间选择器切换时间 <u-cell :isLinktrue click"selectTime" title"开始时间" :value"startTime">…...

python实现websocket

WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许客户端和服务器之间进行实时数据传输&#xff0c;而不是像 HTTP 协议那样&#xff0c;每次请求都需要建立新的连接。WebSocket 协议最初是由 HTML5 定义的&#xff0c;旨在提供一种更有效的替代方案&#xff0c;…...

ElasticSearch简介及常见用法

简介 Elasticsearch 是 Elastic Stack 核心的分布式搜索和分析引擎。 Logstash 和 Beats 有助于收集、聚合和丰富您的数据并将其存储在 Elasticsearch 中。 Kibana 使您能够以交互方式探索、可视化和分享对数据的见解&#xff0c;并管理和监控堆栈。 Elasticsearch 可以快速索…...

js iframe获取documen中的对象为空问题

原因其实是iframe加载是需要时间的&#xff0c;它还没加载完我就在js中直接获取对象了&#xff0c;所以获取为空 var idocument.getElementById("iframe"); i.onloadfunction(){console.log(i.contentDocument)console.log(i.contentWindow.document.getElementById…...

vue3子父组件之间的调用

子组件&#xff1a; capacityIndex.vue 父组件&#xff1a; index.vue A.子组件获取父组件属性 1.在父组件中引用子组件 import capacityIndex from "./capacityIndex"; <capacityIndex :tankInfo"tankInfo" :deviceNameInfo"deviceNameInfo…...

用 二层口 实现三层口 IP 通信的一个实现方法

我们一般用 undo portswitch 来将二层口转为三层口&#xff0c;但如果设备不支持的话&#xff0c;那么。。。 一、拓朴图&#xff1a; 二、实现方法&#xff1a; 起一个 vlan x&#xff0c;配置 vlanif地址&#xff0c;然后二层口划分到 vlan x 下&#xff0c;对端做同样的配置…...

网站建设学习什么/关键词优化快排

优化InnoDB查询要调整InnoDB表查询&#xff0c;请在每个表上创建一组适当的索引。有关详细信息&#xff0c;请参见 第8.3.1节“ MySQL如何使用索引”。请遵循以下InnoDB索引准则&#xff1a;1、因为每个InnoDB表都有一个 主键(无论您是否请求一个主键)&#xff0c;所以请为每个…...

学网页设计报班/浑江区关键词seo排名优化

创建云上的数据恢复计划&#xff0c;很重要的一点是持续跟踪基础架构&#xff0c;DR需求和可能的故障转移持续时间。 公有云给IT部门提供了绝佳的机会来实现业务的持续性/灾难恢复计划&#xff0c;而无需花费巨资构建独享的数据中心。有了云数据恢复系统之后&#xff0c;云就可…...

市场调研报告范文/百度网站推广排名优化

Ngnix 概述&#xff1a; Nginx(“engine x”)是一款是由俄罗斯的程序设计师Igor Sysoev所开发高性能的 Web和 反向代理 服务器&#xff0c;也是一个 IMAP/POP3/SMTP 代理服务器。 在高连接并发的情况下&#xff0c;Nginx是Apache服务器不错的替代品 定义&#xff1a; Ngin…...

电商网站建设济南建网站/太原百度快速排名提升

【2019.6.20 最后编辑】要理解本文&#xff0c;请务必将实验1&#xff1a;框架设计者走一遍。(实验的改进BubbleSort的步骤二&#xff0c;)针对抽象类型编程&#xff0c;表示为SortTest→IntSort<BubbleSort1.1.3控制反转现在聚焦SortTest&#xff0c;它是测试流程的控制模块…...

东莞seoseo优化排名/seo常用工具

之前写某些代码的时候&#xff0c;发现用户莫名奇妙地阻塞了&#xff0c;而且这种阻塞的情况还比较难以形容&#xff1a; 使用session过程中&#xff0c;在开启session后&#xff0c;同一浏览器&#xff0c;执行同一程序&#xff0c;不同页面会被锁。不同浏览器不会出现这种情况…...

亳州做企业网站/市场营销方案范文

为什么80%的码农都做不了架构师&#xff1f;>>> 1. vector<int>* 就是声明一个指向vector<int>的指针vector<int>* pV new vector<int>();pV->push_back(1);vector<int>::iterator it pV->begin();cout << *it &l…...