MNN Session::resize 之流水线编码(五)

系列文章目录
MNN createFromBuffer(一)
MNN createRuntime(二)
MNN createSession 之 Schedule(三)
MNN createSession 之创建流水线后端(四)
MNN Session::resize 之流水线编码(五)
MNN Session 创建执行器(六)
文章目录
- 系列文章目录
- 1、createSession
- 1.1 createMultiPathSession
- 1.1.1 Session::resize
- 1.1.1.1 Pipeline::encode
- 1.1.1.1.1 GeometryComputerUtils::shapeComputeAndGeometryTransform
- 1.1.1.1.1.1 SizeComputer::computeOutputSize
- 1.1.1.1.1.1.1 SizeComputerSuite::search
- 1.1.1.1.1.1.2 ConvolutionSizeComputer::onComputeSize
- 1.1.1.1.1.2 GeometryComputer::search
- 1.1.1.1.1.2.1 GeometryComputerManager::search
- 1.1.1.1.1.3 GeometryConv2D::onRecompute
- 1.1.1.2 Command 命令
- 1.1.1.3 CommandBuffer
1、createSession

依据 ScheduleConfig 和 RuntimeInfo 创建会话。
// source/core/Interpreter.cpp
Session* Interpreter::createSession(const ScheduleConfig& config, const RuntimeInfo& runtime) {return createMultiPathSession({config}, runtime);
}
1.1 createMultiPathSession
// source/core/Interpreter.cpp
Session* Interpreter::createMultiPathSession(const std::vector<ScheduleConfig>& configs, const RuntimeInfo& runtime) {// ...auto result = newSession.get();auto validForResize = info.validForResize;if (validForResize && mNet->modes.inputMode == Session_Input_Inside && mNet->modes.resizeMode == Session_Resize_Direct) {result->resize();}if ((!mNet->cacheFile.empty()) && (!valid) && mNet->modes.backendMode == Session_Backend_Fix) {// Try to save extra cacheauto buffer = result->getCache();if (buffer.first != nullptr && buffer.second > 0) {MNN_PRINT("Write cache to %s, size = %zu\n", mNet->cacheFile.c_str(), buffer.second);writeCacheFile(mNet, buffer);mNet->lastCacheSize = buffer.second;// Write CachecacheMode = cacheMode | 2;}}// Reset cacheresult->loadCache(nullptr, 0);mNet->sessions.emplace_back(std::move(newSession));#ifdef MNN_INTERNAL_ENABLEDint precision = BackendConfig::Precision_Normal;if (nullptr != configs[0].backendConfig) {precision = configs[0].backendConfig->precision;}int mode = configs[0].mode;mNet->sessionInfo.insert(std::make_pair(result, std::make_tuple(precision, mode)));if (shouldLog(FREQ_HIGH)) {std::map<std::string, std::string> metrics = mNet->basicLogginData;metrics.emplace("UUID", mNet->uuid);metrics.emplace("Time", std::to_string((float)_timer.durationInUs() / 1024.0f));metrics.emplace("Backend", std::to_string(configs[0].type));metrics.emplace("Precision", std::to_string(precision));metrics.emplace("Mode", std::to_string(mode));metrics.emplace("Cache", std::to_string(cacheMode));metrics.emplace("CacheSize", std::to_string((float)(mNet->lastCacheSize / 1024.0f)));metrics.emplace("ModelSize", std::to_string ((float)mNet->buffer.size() / 1024.0f / 1024.0f));metrics.emplace("Usage", std::to_string((int) mNet->net->usage()));metrics.emplace("API", "Interpreter::createMultiPathSession");logAsync(metrics);}
#endif // MNN_INTERNAL_ENABLEDreturn result;
}
1.1.1 Session::resize
// source/core/Session.cpp
ErrorCode Session::resize() {
#ifdef LOG_VERBOSEfor (auto& iter : mInputs) {auto& inputTensor = iter.second;MNN_PRINT("before resize, input name:%s, ptr:%p, hostPtr:%p, shape:", iter.first.c_str(), inputTensor, inputTensor->host<void>());inputTensor->printShape();MNN_PRINT("\n");}
#endifbool permitCodegen = mCodegenMode == Interpreter::Session_Codegen_Enable;bool firstMalloc = false;if (mNeedResize) {bool debug = mCallBackMode == Interpreter::Session_Debug;// mPipelines 类型为 std::vector<std::shared_ptr<Pipeline>>for (auto& iter : mPipelines) {auto error = iter->encode(debug, permitCodegen);if (NO_ERROR != error) {return error;}}mNeedResize = false;mNeedMalloc = true;firstMalloc = true;}if (mNeedMalloc) {// Set needResize = true for easy for judge in runSession when errormNeedResize = true;// Turn Pipeline to Command Buffer and Malloc resource// TODO: Separate Schedule and Mallocbool forbidReplace = permitCodegen;if (mInfo.constReplaceBackend != nullptr) {forbidReplace = true;}for (auto& iter : mPipelines) {auto error = iter->allocMemory(firstMalloc, forbidReplace);if (NO_ERROR != error) {return error;}}if(mMemoryUsageMode == Interpreter::Session_Memory_Collect) {#ifdef LOG_VERBOSEfloat memory = 0.0f;#endiffor (auto& iter : mRuntime.first) {iter.second->onGabageCollect(0);#ifdef LOG_VERBOSEmemory += iter.second->onGetMemoryInMB();#endif}#ifdef LOG_VERBOSEFUNC_PRINT_ALL(memory, f);#endif}mNeedMalloc = false;mNeedResize = false;}#ifdef LOG_VERBOSEMNN_PRINT("session after resize\n");for (auto& iter : mOutputs) {auto& outputTensor = iter.second;MNN_PRINT("output name:%s, ptr:%p,shape:", iter.first.c_str(), outputTensor);outputTensor->printShape();MNN_PRINT("\n");}
#endifreturn NO_ERROR;
}
1.1.1.1 Pipeline::encode
BackendCache、OpCacheInfo
// source/core/Pipeline.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
// struct BackendCache {
// Backend::Info info;
// BackendConfig config;
// std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>> cache;
// bool needComputeShape = true;
// bool needComputeGeometry = true;
// bool reportError = true;
// std::map<Tensor*, TENSORCACHE> inputTensorCopyCache;
// };
//
// /** pipeline info */
// struct OpCacheInfo {
// /** op */
// const Op* op;
// /** input tensors */
// std::vector<Tensor*> inputs;
// /** output tensors */
// std::vector<Tensor*> outputs;
// /** schedule type*/
// Schedule::Type type = Schedule::Type::SEPARATE;
//
// /**Command buffer for cache*/
// CommandBuffer cacheBuffer;
//
// /**Command buffer for execute*/
// CommandBuffer executeBuffer;
//
// std::map<const Op*, std::shared_ptr<Execution>> executionCache;
// };
//
ErrorCode Pipeline::encode(bool supportDebug, bool permitCodegen) {// mInfo.first.cache 类型为 std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>>// mBackend 创建的后端如(VulkanBackend)auto& mBackend = mInfo.first.cache.first;// mBackupBackend 创建的后备(默认)后端如(CPUBackend)auto& mBackupBackend = mInfo.first.cache.second;// Static Model just copy info to command buffer// mInfo.first 类型为 BackendCache if (!mInfo.first.needComputeGeometry) {for (int i=0; i<mInfo.second.size(); ++i) {auto& info = mInfo.second[i];SharedPtr<Command> cmd = new Command;cmd->op = info.op;if (cmd->op->type() == OpType_Raster) {// Compability for Origin Static Modelcmd->outputs = info.outputs;if (TensorUtils::getDescribe(info.outputs[0])->regions.empty() && info.inputs.size() > 0 && TensorUtils::getDescribe(info.inputs[0])->regions.size() > 0) {TensorUtils::getDescribe(info.outputs[0])->regions = std::move(TensorUtils::getDescribe(info.inputs[0])->regions);TensorUtils::setRasterInputs(cmd.get());} else {cmd->inputs = info.inputs;}} else {cmd->inputs = info.inputs;cmd->outputs = info.outputs;}info.executeBuffer.command = {cmd};}} else {
#ifndef MNN_BUILD_MINI// mContext 类型为 GeometryComputer::ContextmContext.clear();/** Size Compute and compute Const Begin */auto res = GeometryComputerUtils::shapeComputeAndGeometryTransform(mInfo.second, mContext, mInfo.first.cache.second, mUseGeometry, false, permitCodegen);if (res != NO_ERROR) {return res;}
#endif}// Propagate Scale and insert new commandif (mIsQuantModel && (mBackend->type() == MNN_FORWARD_CPU || mBackend->type() == MNN_FORWARD_CPU_EXTENSION || mBackend->type() == MNN_FORWARD_CUDA || mBackend->type() == MNN_FORWARD_NN || mBackend->type() == MNN_FORWARD_OPENCL)) {// get propagate mapusing PropagateMap = std::map<const MNN::Tensor*, std::set<const MNN::Tensor*>>;PropagateMap forwardMap, backwardMap;auto insertPropagateMap = [](PropagateMap& propagateMap, const Tensor* s, const Tensor* t) {if (propagateMap.find(s) == propagateMap.end()) {propagateMap[s] = std::set<const Tensor*>({t});} else {propagateMap[s].insert(t);}};std::set<OpType> propagateOpTypes = { OpType_Raster, OpType_ReLU, OpType_ReLU6, OpType_Pooling,OpType_Interp, OpType_CropAndResize, OpType_ROIPooling, OpType_Gather,OpType_GatherV2, OpType_GatherV2, OpType_ScatterNd};for (auto& info : mInfo.second) {auto& buffer = info.executeBuffer;for (const auto& cmdP : buffer.command) {auto& cmd = *cmdP;const auto type = cmd.op->type();const auto output = cmd.outputs[0];if (propagateOpTypes.find(type) != propagateOpTypes.end()) {for (auto t : cmd.inputs) {insertPropagateMap(forwardMap, t, output);insertPropagateMap(backwardMap, output, t);}}}}auto getStart = [&forwardMap, &backwardMap](bool forward) {auto& propagateMap = forward ? forwardMap : backwardMap;auto& antiMap = forward ? backwardMap : forwardMap;// delete N->1 Map of Opfor (const auto& iter : antiMap) {if (iter.second.size() > 1) {for (auto t : iter.second) {auto res = propagateMap.find(t);if (res != propagateMap.end()) {propagateMap.erase(res);}}}}std::set<const Tensor*> root, leaf, start;for (const auto& iter : propagateMap) {root.insert(iter.first);for (auto t : iter.second) {leaf.insert(t);}}std::set_difference(root.begin(), root.end(), leaf.begin(), leaf.end(), std::inserter(start, start.begin()));return start;};auto forwardStart = getStart(true);auto backwardStart = getStart(false);// propagate scaleauto propagateScale = [](PropagateMap& propagateMap, std::set<const Tensor*>& start) {std::function<bool(const Tensor*)> scalePropagate = [&propagateMap, &scalePropagate](const Tensor* t) {if (TensorUtils::getDescribe(t)->quantAttr.get() == nullptr) {return false;}if (propagateMap.find(t) == propagateMap.end()) {return false;}bool change = false;for (auto x : propagateMap[t]) {if (TensorUtils::getDescribe(x)->quantAttr != TensorUtils::getDescribe(t)->quantAttr) {TensorUtils::getDescribe(x)->quantAttr = TensorUtils::getDescribe(t)->quantAttr;change = true;}change |= scalePropagate(x);}return change;};bool change = false;for (auto t : start) {change |= scalePropagate(t);}return change;};for (int i = 0; i < 3 && (propagateScale(forwardMap, forwardStart) || propagateScale(backwardMap, backwardStart)); i++);// Insert caststd::map<const Tensor*, Tensor*> cachedCastTensor;for (auto& info : mInfo.second) {auto bufferCommand = std::move(info.executeBuffer.command);bool hasConvert = false;for (auto cmdP : bufferCommand) {auto& cmd = *cmdP;auto& outputs = cmd.outputs;auto& inputs = cmd.inputs;auto opType = cmd.op->type();// Check if need use quant opDataType runType = DataType_DT_FLOAT;bool useQuant = false;if (outputs.size() == 1) {// Quant: output and all input has quantAttr and op supportif (TensorUtils::getDescribe(outputs[0])->quantAttr != nullptr) {useQuant = _supportQuant(cmd.op, inputs, outputs, mBackend->type());}if (useQuant) {for (auto t : inputs) {if (TensorUtils::getDescribe(t)->quantAttr == nullptr) {useQuant = false;break;}}}}if (useQuant) {runType = DataType_DT_INT8;}for (auto o : outputs) {auto quan = TensorUtils::getDescribe(o)->quantAttr;if (nullptr != quan) {TensorUtils::getDescribe(o)->type = runType;}}auto makeCommand = [&cachedCastTensor, &info](CommandBuffer& cmdBuffer, Tensor* input, DataType runType) {if (cachedCastTensor.find(input) != cachedCastTensor.end()) {return cachedCastTensor[input];}std::shared_ptr<Tensor> wrapTensor(new Tensor);TensorUtils::copyShape(input, wrapTensor.get(), true);TensorUtils::setLinearLayout(wrapTensor.get());auto des = TensorUtils::getDescribe(wrapTensor.get());auto originDes = TensorUtils::getDescribe(input);if (originDes->quantAttr != nullptr) {des->quantAttr.reset(new QuantAttr);*des->quantAttr = *originDes->quantAttr;des->type = runType;}cmdBuffer.extras.emplace_back(wrapTensor);SharedPtr<Command> command(new Command);command->inputs = {input};command->outputs = {wrapTensor.get()};info.cacheBuffer.hasWrap = true;flatbuffers::FlatBufferBuilder builder;OpBuilder opB(builder);if (runType == DataType_DT_INT8) {opB.add_type(OpType_FloatToInt8);} else {opB.add_type(OpType_Int8ToFloat);}builder.Finish(opB.Finish());command->buffer.reset(new BufferStorage);command->buffer->storage = builder.ReleaseRaw(command->buffer->allocated_size, command->buffer->offset);command->op = flatbuffers::GetRoot<Op>(command->buffer->buffer());info.executeBuffer.command.emplace_back(std::move(command));return wrapTensor.get();};// judge is it need CastWrapif (OpType_Raster == opType) {for (int v=0; v<cmd.inputs.size(); ++v) {auto input = cmd.inputs[v];bool needCast = CPUBackend::getDataType(input) != runType;if (needCast) {cmd.inputs[v] = makeCommand(info.executeBuffer, input, runType);}}} else {for (int i = 0; i < cmd.inputs.size(); i++) {if (OpCommonUtils::opNeedContent(cmd.op, i) && inputs[i]->getType() != halide_type_of<int>()) {bool needCast = CPUBackend::getDataType(inputs[i]) != runType;if (needCast) {cmd.inputs[i] = makeCommand(info.executeBuffer, inputs[i], runType);}}}}info.executeBuffer.command.emplace_back(cmdP);}}}/** Prepare DebugInfo*/if (supportDebug) {mFlops = 0.0f;int totalIndex = 0;for (auto& info : mInfo.second) {auto& buffer = info.executeBuffer;int index = 0;for (auto& cmdP : buffer.command) {auto& cmd = *cmdP;cmd.info.reset(new UnitInfo);static_cast<UnitInfo*>(cmd.info.get())->setUp(cmd, index++, info.op, totalIndex++);mFlops += cmd.info->flops();}}}
#ifndef MNN_BUILD_MINIelse {for (auto& info : mInfo.second) {auto& buffer = info.executeBuffer;for (auto& cmdP : buffer.command) {mFlops += SizeComputer::computeFlops(cmdP->op, cmdP->inputs, cmdP->outputs);}}}
#endifreturn NO_ERROR;
}
1.1.1.1.1 GeometryComputerUtils::shapeComputeAndGeometryTransform
OpCacheInfo
// source/geometry/GeometryComputerUtils.cpp
// /** pipeline info */
// struct OpCacheInfo {
// /** op */
// const Op* op;
// /** input tensors */
// std::vector<Tensor*> inputs;
// /** output tensors */
// std::vector<Tensor*> outputs;
// /** schedule type*/
// Schedule::Type type = Schedule::Type::SEPARATE;
//
// /**Command buffer for cache*/
// CommandBuffer cacheBuffer;
//
// /**Command buffer for execute*/
// CommandBuffer executeBuffer;
//
// std::map<const Op*, std::shared_ptr<Execution>> executionCache;
// };
//
ErrorCode GeometryComputerUtils::shapeComputeAndGeometryTransform(std::vector<Schedule::OpCacheInfo>& infos,GeometryComputer::Context& geoContext,std::shared_ptr<Backend> backupBackend,Runtime::CompilerType compileType, bool skipShapeCompute,bool permitCodegen) {/** Size Compute and compute Const Begin */GeometryComputer::Context ctx(backupBackend);// Size Compute and compute Const// infos 为算子缓存,大小为 171for (int i=0; i<infos.size(); ++i) {// info 类型为 OpCacheInfoauto& info = infos[i];auto& cmdBufferVir = info.executeBuffer;auto& tempBuffer = info.cacheBuffer;// TODO: OptimizecmdBufferVir.command.clear();cmdBufferVir.extras.clear();for (auto t : info.outputs) {if (!TensorUtils::getDescribe(t)->isMutable) {continue;}auto usage = TensorUtils::getDescribe(t)->usage;auto type = TensorUtils::getDescribe(t)->memoryType;MNN_ASSERT(type != Tensor::InsideDescribe::MEMORY_OUTSIDE);MNN_ASSERT(type != Tensor::InsideDescribe::MEMORY_HOST);if (TensorUtils::getDescribeOrigin(t)->mContent->count() > 1) {TensorUtils::getDescribeOrigin(t)->mContent = new Tensor::InsideDescribe::NativeInsideDescribe;t->buffer().dim = TensorUtils::getDescribe(t)->dims;TensorUtils::getDescribe(t)->usage = usage;} else {// 不是不变的和可训练的if (info.type != Schedule::CONSTANT && usage != Tensor::InsideDescribe::TRAINABLE) {TensorUtils::getDescribeOrigin(t)->mContent->setBackend(nullptr);// TODO: If output is static and length larger than new size, don't clear memTensorUtils::getDescribeOrigin(t)->mContent->mem.reset(nullptr);}}}if (!skipShapeCompute) {auto res = SizeComputer::computeOutputSize(info.op, info.inputs, info.outputs);if (!res) {if (info.op->name() != nullptr) {MNN_ERROR("Compute Shape Error for %s\n", info.op->name()->c_str());} else {MNN_ERROR("Compute Shape Error for %d\n", info.op->type());}return COMPUTE_SIZE_ERROR;}// FIXME: Find better way to may compability for old model/**For Convolution of 2D / 3D Tensor(Dense / 1D Convolution)Because of old code, we will acces dim[2] / dim[3] to get width and heightSet the lenght to 1 for compability*/for (auto t : info.outputs) {TensorUtils::adjustTensorForCompability(t);}}if (info.type == Schedule::CONSTANT) {if (_hasZeroShapeOutput(info)) {continue;}ctx.clear();auto geo = GeometryComputer::search(info.op->type(), Runtime::Compiler_Loop);{auto res = geo->onRecompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);if (!res) {tempBuffer.command.clear();tempBuffer.extras.clear();res = geo->onCompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);}if (!res) {MNN_ERROR("Const Folder Error in geometry for %s\n", info.op->name()->c_str());return NOT_SUPPORT;}}GeometryComputerUtils::makeRaster(tempBuffer, cmdBufferVir, ctx);for (auto t : info.outputs) {ctx.getRasterCacheCreateRecursive(t, cmdBufferVir);}for (auto& cp : cmdBufferVir.command) {auto& c = *cp;if (nullptr == c.execution) {c.execution.reset(backupBackend->onCreate(c.inputs, c.outputs, c.op));}auto exe = c.execution;if (nullptr == exe.get()) {MNN_ERROR("Const Folder Error for %s\n", info.op->name()->c_str());return NO_EXECUTION;}for (auto t : c.outputs) {auto des = TensorUtils::getDescribe(t);TensorUtils::setLinearLayout(t);auto res = backupBackend->onAcquireBuffer(t, Backend::STATIC);if (!res) {return OUT_OF_MEMORY;}des->setBackend(backupBackend.get());}backupBackend->onResizeBegin();auto code = exe->onResize(c.inputs, c.outputs);if (NO_ERROR != code) {return NOT_SUPPORT;}code = backupBackend->onResizeEnd();if (NO_ERROR != code) {return NOT_SUPPORT;}code = exe->onExecute(c.inputs, c.outputs);if (NO_ERROR != code) {return NOT_SUPPORT;}}// Clear const commandctx.pushCache(cmdBufferVir);cmdBufferVir.command.clear();cmdBufferVir.extras.clear();}}/** Size Compute and compute Const End *//** Geometry Transform */for (int i=0; i<infos.size(); ++i) {auto& info = infos[i];auto& cmdBufferReal = info.executeBuffer;auto& tempBuffer = info.cacheBuffer;// TODO: Optimizeif (info.type == Schedule::CONSTANT) {continue;}if (_hasZeroShapeOutput(info)) {continue;}auto geo = GeometryComputer::search(info.op->type(), compileType);{bool res = false;if (!tempBuffer.hasWrap) {res = geo->onRecompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);}if (!res) {tempBuffer.command.clear();tempBuffer.extras.clear();res = geo->onCompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);}if (!res) {return NOT_SUPPORT;}tempBuffer.hasWrap = false;GeometryComputerUtils::makeRaster(tempBuffer, cmdBufferReal, geoContext);for (auto t : info.outputs) {auto des = TensorUtils::getDescribe(t);if (des->usage == Tensor::InsideDescribe::OUTPUT || des->usage == Tensor::InsideDescribe::TRAINABLE) {// For output and trainable value, must directly compute the tensorgeoContext.getRasterCacheCreateRecursive(t, cmdBufferReal);}}}}#ifdef MNN_BUILD_CODEGENif(permitCodegen) {#ifdef LOG_VERPOSEMNN_PRINT("infos : [\n");for (auto info : infos) {auto& cmds = info.executeBuffer.command;for (auto cmd : cmds) {MNN_PRINT("\t%s", EnumNameOpType(cmd->op->type()));if(cmd->op->type() == OpType_BinaryOp) {MNN_PRINT(" %d ", cmd->op->main_as_BinaryOp()->opType());}if(cmd->op->type() == OpType_UnaryOp) {MNN_PRINT(" %d ", cmd->op->main_as_UnaryOp()->opType());}MNN_PRINT("\n");}}MNN_PRINT("]\n");MNN_PRINT("==================== opFuse ====================\n");#endifopFuse(infos, geoContext.forwardType(), geoContext.precisionType());#ifdef LOG_VERPOSEMNN_PRINT("infos : [\n");for (auto info : infos) {auto& cmds = info.executeBuffer.command;for (auto cmd : cmds) {MNN_PRINT("\t%s\n", EnumNameOpType(cmd->op->type()));}}MNN_PRINT("]\n");#endif}
#endifreturn NO_ERROR;
}
1.1.1.1.1.1 SizeComputer::computeOutputSize
// source/shape/SizeComputer.cpp
bool SizeComputer::computeOutputSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,const std::vector<Tensor*>& outputs) {auto computeFactory = SizeComputerSuite::get();// When op is nullptr, it means a copy opif (nullptr != op) {// For Loop Opif (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {auto loop = op->main_as_LoopParam();if (loop->extraTensorInfos() == nullptr) {return false;}MNN_ASSERT(loop->extraTensorInfos()->size() == outputs.size());for (int i=0; i<outputs.size(); ++i) {auto des = loop->extraTensorInfos()->GetAs<TensorDescribe>(i);MNN_ASSERT(des->blob() != nullptr);auto blob = des->blob();TensorUtils::getDescribe(outputs[i])->dimensionFormat = blob->dataFormat();outputs[i]->setType(blob->dataType());if (blob->dims() != nullptr) {auto dims = blob->dims()->data();outputs[i]->buffer().dimensions = blob->dims()->size();for (int j=0; j<blob->dims()->size(); ++j) {outputs[i]->setLength(j, dims[j]);}} else {outputs[i]->buffer().dimensions = 0;}}return true;}// Don't support compute shape for control flow opif (op->type() == OpType_While || op->type() == OpType_If) {return false;}// Check -1 inputfor (auto& t : inputs) {for (int i=0; i < t->dimensions(); ++i) {if (t->length(i) < 0) {return false;}}}auto computer = computeFactory->search(op->type());if (nullptr != computer) {bool ret = computer->onComputeSize(op, inputs, outputs);
#ifdef MNN_DEBUG_TENSOR_SIZE_printShape(op, inputs, outputs);
#endifreturn ret;}}// Default Set to the sameif (inputs.size() >= 1 && (outputs.size() == 1 || outputs.size() == inputs.size())) {if (inputs[0] == outputs[0]) {return true;}for (int i=0; i<outputs.size(); ++i) {const auto& ib = inputs[i]->buffer();auto& ob = outputs[i]->buffer();memcpy(ob.dim, ib.dim, sizeof(halide_dimension_t) * ib.dimensions);ob.dimensions = ib.dimensions;ob.type = ib.type;TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[i])->dimensionFormat;}
#ifdef MNN_DEBUG_TENSOR_SIZE_printShape(op, inputs, outputs);
#endifreturn true;}// Not SupportMNN_PRINT("Can't compute size for %d, name=%s\n", op->type(), op->name() ? op->name()->c_str() : "");return false;
}
1.1.1.1.1.1.1 SizeComputerSuite::search
// source/shape/SizeComputer.cpp
SizeComputer* SizeComputerSuite::search(OpType name) {auto iter = mRegistry[name];if (iter == nullptr) {return nullptr;}return iter;
}
1.1.1.1.1.1.2 ConvolutionSizeComputer::onComputeSize
// source/shape/ShapeConvolution.cpp
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,const std::vector<Tensor*>& outputs) const override {MNN_ASSERT(inputs.size() >= 1);MNN_ASSERT(1 == outputs.size());const Convolution2DCommon* layer = loadCommon(op);int kX = layer->kernelX();int kY = layer->kernelY();auto outputCount = layer->outputCount();if (inputs.size() > 1 && outputCount == 0) {// From TF's multi input convolutionoutputCount = inputs[1]->length(0);kX = inputs[1]->length(3);kY = inputs[1]->length(2);}int kernel_width = layer->dilateX() * (kX - 1) + 1;int kernel_height = layer->dilateY() * (kY - 1) + 1;int output_width = 1;int output_height = 1;auto input = inputs[0];if (input->dimensions() <= 1) {// Convolution is not valid for dimension <= 1return false;}auto inputCount = layer->inputCount();bool depthwiseMatch =inputCount == layer->outputCount() &&inputCount == layer->group() &&inputCount == input->channel();int commonChannelMatch =inputCount == inputs[0]->channel() || // real relationship in express(inputCount * layer->group() == input->channel()); // standard definition of group convolutionbool valid = inputCount == 0 || depthwiseMatch || commonChannelMatch;// For Tensorflow Group Convolution, the inputCount is the size of filter's input countif (inputs.size() == 1 && !valid && OpType_Convolution == op->type()) {input->printShape();MNN_ERROR("Error for compute convolution shape, inputCount:%d, outputCount:%d, KH:%d, KW:%d, group:%d\ninputChannel: %d, batch:%d, width:%d, height:%d. ""Input data channel may be mismatch with filter channel count\n",layer->inputCount(), outputCount, kY, kX, layer->group(),input->channel(), input->batch(), input->width(), input->height());return false;}if (layer->padMode() == PadMode_SAME) {// Tensorflow padding mode SAMEoutput_width = ceil((float)input->width() / (float)layer->strideX());output_height = ceil((float)input->height() / (float)layer->strideY());} else if (layer->padMode() == PadMode_VALID) {// Tensorflow padding mode VALIDoutput_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());} else {// Pad_Caffe means User setted paddingif (nullptr != layer->pads()) {MNN_ASSERT(layer->pads()->size() >= 4);int input_width = input->width() + layer->pads()->data()[1] + layer->pads()->data()[3];int input_height = input->height() + layer->pads()->data()[0] + layer->pads()->data()[2];output_width = input_width < kernel_width ? 0 : (input_width - kernel_width) / layer->strideX() + 1;output_height = input_height < kernel_height ? 0 : (input_height - kernel_height) / layer->strideY() + 1;} else {int input_width = input->width() + layer->padX() * 2;int input_height = input->height() + layer->padY() * 2;output_width = (input_width - kernel_width) / layer->strideX() + 1;output_height = (input_height - kernel_height) / layer->strideY() + 1;}}auto& outputBuffer = outputs[0]->buffer();outputBuffer.dimensions = input->buffer().dimensions;auto format = TensorUtils::getDescribe(input)->dimensionFormat;outputBuffer.type = input->getType();if (op->main_as_Convolution2D() && op->main_as_Convolution2D()->symmetricQuan() && op->main_as_Convolution2D()->symmetricQuan()->outputDataType() != DataType_DT_INT8) {auto type = op->main_as_Convolution2D()->symmetricQuan()->outputDataType();outputs[0]->setType(type);}outputBuffer.dim[0].extent = input->buffer().dim[0].extent;if (MNN_DATA_FORMAT_NHWC == format) {outputBuffer.dim[3].extent = outputCount;outputBuffer.dim[1].extent = output_height;outputBuffer.dim[2].extent = output_width;} else {outputBuffer.dim[1].extent = outputCount;outputBuffer.dim[2].extent = output_height;outputBuffer.dim[3].extent = output_width;}// MNN_PRINT("outputs: %d, %d, %d, %d\n", outputs[0]->length(0), outputs[0]->length(1), outputs[0]->length(2), outputs[0]->length(3));TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;return true;}
1.1.1.1.1.2 GeometryComputer::search
// source/geometry/GeometryComputer.cpp
const GeometryComputer* GeometryComputer::search(int type, Runtime::CompilerType compType) {return GeometryComputerManager::get()->search(type, compType);
}
1.1.1.1.1.2.1 GeometryComputerManager::search
// source/geometry/GeometryComputer.cppGeometryComputer* search(int type, Runtime::CompilerType compType) {if (Runtime::Compiler_Origin == compType) {return &mDefault;}if (Runtime::Compiler_Loop == compType) {auto iter = mLoopTable[type].get();if (iter != nullptr) {return iter;}}// Geometryauto iter = mTable[type].get();if (iter != nullptr) {// FUNC_PRINT(type);return iter;}return &mDefault;}
1.1.1.1.1.3 GeometryConv2D::onRecompute
virtual bool onRecompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,Context& context, CommandBuffer& res) const override {return false;}
1.1.1.2 Command 命令
// source/core/Command.hpp
struct Command : public RefCount {const Op* op;std::vector<Tensor*> workInputs;std::vector<Tensor*> workOutputs;std::vector<Tensor*> inputs;std::vector<Tensor*> outputs;std::shared_ptr<BufferStorage> buffer;std::shared_ptr<Execution> execution;std::shared_ptr<OperatorInfo> info;#ifdef MNN_BUILD_CODEGENbool canVectorize = false;#endif
};
1.1.1.3 CommandBuffer
// source/core/Command.hpp
struct CommandBuffer {std::vector<SharedPtr<Command>> command;std::vector<std::shared_ptr<Tensor>> extras;bool hasWrap = false;
};
☆
相关文章:
MNN Session::resize 之流水线编码(五)
系列文章目录 MNN createFromBuffer(一) MNN createRuntime(二) MNN createSession 之 Schedule(三) MNN createSession 之创建流水线后端(四) MNN Session::resize 之流水线编码&am…...
2. IS-IS 基础实验
2.1 IS-IS 配置实验 2.1.1 实验介绍 2.1.1.1 学习目标 1. 实现 IS-IS 协议基本配置 2. 实现 IS-IS 协议 DIS 优先级修改 3. 实现 IS-IS 协议网络类型修改 4. 实现 IS-IS 协议外部路由引入 5. 实现 IS-IS 接口 cost 修改 6. 实现 IS-IS 路由渗透配置 2.1.1.2 实验组网介…...
Rust 并行库 crossbeam 的 Channel 示例
示例1 一个不完整的示例: let (tx, rx) channel::unbounded::<Task>(); let mut handlers vec![];for _ in 0..number {let rx rx.clone();let handle thread::spawn(move || {while let Some(task) rx.recv() {task.call_box();}});handlers.push(han…...
缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级的理解
一:缓存雪崩 我们可以简单的理解为:由于原有缓存失效,新缓存未到期间 (例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了ÿ…...
springcloud gateway
一、 predicate : 就是你定义一些规则,如果满足了这些规则,就去找到对应的路由。 对于strip 二、自定义过略器和全局过滤器 约定大于配置,后缀不变,只改前缀 sentinel持久化 三、sentinel quick-start | Sentinel 信号量虽然简…...
JAVA八股day1
遇到的问题 相比于包装类型(对象类型), 基本数据类型占用的空间往往非常小为什么说是几乎所有对象实例都存在于堆中呢?静态变量和成员变量、成员变量和局部变量的区别为什么浮点数运算的时候会有精度丢失的风险?如何解…...
探索拓展坞的奥秘:提升电脑接口的无限可能
在数字化时代的浪潮中,电脑已成为我们日常生活和工作中不可或缺的一部分。然而,随着外接设备的日益增多,电脑接口的数量和类型往往无法满足我们的需求。这时,拓展坞便应运而生,以其强大的扩展能力和便捷的使用方式&…...
Linux中执行脚本报错(脚本乱码问题)
主要原因是在windows中编译文件格式导致 linux下解决: 方案一: Linux下打开shell文件,用vi/vim命令打开脚本文件,输入“:set fileformatunix”,回车,保存退出。 方案二: yum install -y dos2uni…...
el-table按钮获取当前行元素
el-table按钮获取当前行元素 vue2 <el-table-column label"操作" width"240px"><template slot-scope"scope"><el-button size"mini" click"toItem(scope.row)">用户详情</el-button><el-butto…...
MySQL数据导入的方式介绍
MySQL数据库中的数据导入是一个常见操作,它涉及将数据从外部源转移到MySQL数据库表中。在本教程中,我们将探讨几种常见的数据导入方式,包括它们的特点、使用场景以及简单的示例。 1. 命令行导入 使用MySQL命令行工具mysql是导入数据的…...
构建部署_Docker常用命令
构建部署_Docker常见命令 启动命令镜像命令容器命令 启动命令 启动docker:systemctl start docker 停止docker:systemctl stop docker 重启docker:systemctl restart docker 查看docker状态:systemctl status docker 开机启动&…...
Spring Boot Actuator介绍
大家在yaml中经常见到的这个配置 management: endpoints: web: exposure: #该配置线上需要去掉,会有未授权访问漏洞 include: "*" 他就是Actuator! 一、什么是 Actuator Spring Boot Actuator 模块提供了生产级别…...
数据库中DQL、DML、DDL、DCL的概念与区别
目录 DQL (Data Query Language) DML (Data Manipulation Language) DDL (Data Definition Language) DCL (Data Control Language) 数据库语言可以根据其功能被分为几个不同的类别:DQL(数据查询语言)、DML(数据操纵语言&…...
MacOS---设置Java环境变量
介绍 在MacOS系统配置Java环境变量。 操作步骤 第一步:打开.bash_profile文件 vim ~/.bash_profile第二步:添加或修改配置 如果是第一次配置需要添加配置如果是已经配置过想更换其他版本需要修改配置 在文件末尾添加或修改下面的配置 export JAVA…...
使用 Boot Camp 助理查明您的 Mac 需不需要 Windows 安装介质
使用 Boot Camp 助理查明您的 Mac 需不需要 Windows 安装介质 当前的 Mac 机型无需介质即可安装 Windows,也就是说,您不需要用到外置驱动器。较早的 Mac 机型需要用到 USB 驱动器或光盘驱动器。使用 Boot Camp 助理可查明您需要用到什么。 Boot Camp 助…...
KY105 整除问题(用Java实现)
描述 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k1)整除。 输入描述: 两个整数n(2<n<1000),a(2<a<1000) 输出描述: 一个整数. 示例1 输入: 6 10输出: 1代…...
C++ 接口的实现,及作用通俗理解方式
接口 C中的接口,一般就是指抽象类,是一种用来描述类对外提供的操作、方法或功能的集合——注意,一般只是描述(声明),而不对这些方法或功能进行定义实现,通常在类的继承或多态中作为基类使用&am…...
TypeScript:typescript的安装与运行
TypeScript:typescript的安装与运行 1 安装方式 -g全局安装TypeScript: npm install -g typescript2 运行方式 (1)ts编译成js,使用node命令运行js文件 打开vscode,进入ts文件所在目录下并打开终端term…...
【代码随想录Day27】
Day 27 回溯算法03 今日任务 组合总和 40.组合总和II131.分割回文串 代码实现 组合总和,直接套模板可解 public List<List<Integer>> combinationSum(int[] candidates, int target) {backtracking(candidates, target, 0);return result;}void back…...
【一】【单片机】有关LED的实验
点亮一个LED灯 根据LED模块原理图,我们可以知道,通过控制P20、P21...P27这八个位置的高低电平,可以实现D1~D8八个LED灯的亮灭。VCC接的是高电平,如果P20接的是低电平,那么D1就可以亮。如果P20接的是高电平,…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
