当前位置: 首页 > news >正文

01|模型IO:输入提示、调用模型、解析输出

Model I/O

可以把对模型的使用过程拆解成三块,分别是输入提示(对应图中的Format)、调用模型(对应图中的Predict)和输出解析(对应图中的Parse)。这三块形成了一个整体,因此在LangChain中这个过程被统称为 Model I/O。
image.png

提示模板


提示工程:Prompt Engineering
吴恩达老师在他的提示工程课程中所说的:

  1. 给予模型清晰明确的指示
  2. 让模型慢慢地思考
# 导入LangChain中的提示模板
from langchain import PromptTemplate
# 创建原始模板
template = """ 
您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template) 
# 打印LangChain提示模板的内容
print(prompt)

提示模板的具体内容如下:

input_variables=['flower_name', 'price'] 
output_parser=None partial_variables={} 
template='/\n您是一位专业的鲜花店文案撰写员。
\n对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?\n'
template_format='f-string' 
validate_template=True

LangChain 提供了多个类和函数,也为各种应用场景设计了很多内置模板,使构建和使用提示变得容易

语言模型

LangChain中支持的模型有三大类。

  1. 大语言模型(LLM) ,也叫Text Model,这些模型将文本字符串作为输入,并返回文本字符串作为输出。Open AI的text-davinci-003、Facebook的LLaMA、ANTHROPIC的Claude,都是典型的LLM。
  2. 聊天模型(Chat Model),主要代表Open AI的ChatGPT系列模型。这些模型通常由语言模型支持,但它们的 API 更加结构化。具体来说,这些模型将聊天消息列表作为输入,并返回聊天消息。
  3. 文本嵌入模型(Embedding Model),这些模型将文本作为输入并返回浮点数列表,也就是Embedding。


接上面的代码:

# 导入LangChain中的OpenAI模型接口
from langchain import OpenAI
# 创建模型实例
model = OpenAI(model_name='text-davinci-003')
# 输入提示
input = prompt.format(flower_name=["玫瑰"], price='50')
# 得到模型的输出
output = model(input)
# 打印输出内容
print(output) 

具体的提示:“您是一位专业的鲜花店文案撰写员。对于售价为 50 元的玫瑰,您能提供一个吸引人的简短描述吗?”

模型可以自由选择、自主训练,而调用模型的框架往往是有章法、而且可复用的

输出解析

在开发具体应用的过程中,很明显我们不仅仅需要文字,更多情况下我们需要的是程序能够直接处理的、结构化的数据
在这个文案中,如果你希望模型返回两个字段:

  • description:鲜花的说明文本
  • reason:解释一下为何要这样写上面的文案

A:“文案是:让你心动!50元就可以拥有这支充满浪漫气息的玫瑰花束,让TA感受你的真心爱意。为什么这样说呢?因为爱情是无价的,50元对应热恋中的情侣也会觉得值得。”
B:{description: “让你心动!50元就可以拥有这支充满浪漫气息的玫瑰花束,让TA感受你的真心爱意。” ; reason: “因为爱情是无价的,50元对应热恋中的情侣也会觉得值得。”}
像b这种数据结构,langchain中的输出解析器可以帮助我们实现

# 通过LangChain调用模型
from langchain import PromptTemplate, OpenAI# 导入OpenAI Key
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'# 创建原始提示模板
prompt_template = """您是一位专业的鲜花店文案撰写员。
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
{format_instructions}"""# 创建模型实例
model = OpenAI(model_name='text-davinci-003')# 导入结构化输出解析器和ResponseSchema
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
# 定义我们想要接收的响应模式
response_schemas = [ResponseSchema(name="description", description="鲜花的描述文案"),ResponseSchema(name="reason", description="问什么要这样写这个文案")
]
# 创建输出解析器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)# 获取格式指示
format_instructions = output_parser.get_format_instructions()
# 根据原始模板创建提示,同时在提示中加入输出解析器的说明
prompt = PromptTemplate.from_template(prompt_template, partial_variables={"format_instructions": format_instructions}) # 数据准备
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]# 创建一个空的DataFrame用于存储结果
import pandas as pd
df = pd.DataFrame(columns=["flower", "price", "description", "reason"]) # 先声明列名for flower, price in zip(flowers, prices):# 根据提示准备模型的输入input = prompt.format(flower_name=flower, price=price)# 获取模型的输出output = model(input)# 解析模型的输出(这是一个字典结构)parsed_output = output_parser.parse(output)# 在解析后的输出中添加“flower”和“price”parsed_output['flower'] = flowerparsed_output['price'] = price# 将解析后的输出添加到DataFrame中df.loc[len(df)] = parsed_output  # 打印字典
print(df.to_dict(orient='records'))# 保存DataFrame到CSV文件
df.to_csv("flowers_with_descriptions.csv", index=False)输出
[{'flower': '玫瑰', 'price': '50', 'description': 'Luxuriate in the beauty of this 50 yuan rose, with its deep red petals and delicate aroma.', 'reason': 'This description emphasizes the elegance and beauty of the rose, which will be sure to draw attention.'}, 
{'flower': '百合', 'price': '30', 'description': '30元的百合,象征着坚定的爱情,带给你的是温暖而持久的情感!', 'reason': '百合是象征爱情的花,写出这样的描述能让顾客更容易感受到百合所带来的爱意。'}, 
{'flower': '康乃馨', 'price': '20', 'description': 'This beautiful carnation is the perfect way to show your love and appreciation. Its vibrant pink color is sure to brighten up any room!', 'reason': 'The description is short, clear and appealing, emphasizing the beauty and color of the carnation while also invoking a sense of love and appreciation.'}]

LangChain框架的好处:
模板管理、变量提取和检查、模型切换、输出解析

相关文章:

01|模型IO:输入提示、调用模型、解析输出

Model I/O 可以把对模型的使用过程拆解成三块,分别是输入提示(对应图中的Format)、调用模型(对应图中的Predict)和输出解析(对应图中的Parse)。这三块形成了一个整体,因此在LangCha…...

Android Studio实现内容丰富的安卓民宿酒店预订平台

获取源码请点击文章末尾QQ名片联系,源码不免费,尊重创作,尊重劳动 1.开发环境android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端: 1.注册登录 2.查看民宿 3.民宿预订 4.民宿预订支付, 5.支付订单 6.评论管…...

SCI一区 | Matlab实现RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程…...

AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.03.10-2024.03.15

论文目录~ 1.3D-VLA: A 3D Vision-Language-Action Generative World Model2.PosSAM: Panoptic Open-vocabulary Segment Anything3.Anomaly Detection by Adapting a pre-trained Vision Language Model4.Introducing Routing Functions to Vision-Language Parameter-Efficie…...

路由器端口转发远程桌面控制:一电脑连接不同局域网的另一电脑

一、引言 路由器端口转发:指在路由器上设置一定的规则,将外部的数据包转发到内部指定的设备或应用程序。这通常需要对路由器进行一些配置,以允许外部网络访问内部网络中的特定服务和设备。端口转发功能可以实现多种应用场景,例如远…...

sparksession对象简介

什么是sparksession对象 spark2.0之后,sparksession对象是spark编码的统一入口对象,通常我们在rdd编程时,需要SparkContext对象作为RDD编程入口,但sparksession对象既可以作为RDD编程对象入口,在sparkcore编程中可以通…...

2、Java虚拟机之类的生命周期-连接(验证、准备、解析)

一、类的生命周期 连接阶段之验证 连接阶段的第一个环节是验证&#xff0c;验证的主要目的是检测Java字节码文件是否遵守了<Java虚拟机规范>中的约束。这个阶段一般是不需要程序员进行处理。 主要包含如下四个部分,具体详见<<Java虚拟机规范>>: 1、文件格…...

IPD集成产品开发:塑造企业未来竞争力的关键

随着市场竞争的日益激烈&#xff0c;企业对产品开发的要求也越来越高。如何在快速变化的市场环境中&#xff0c;既保证产品的批量生产效率&#xff0c;又满足客户的个性化需求&#xff0c;成为了企业面临的重要挑战。IPD&#xff08;集成产品开发&#xff09;模式&#xff0c;作…...

一个可商用私有化部署的基于JAVA的chat-gpt网站

目录 介绍一、核心功能1、智能对话2、AI绘画3、知识库4、一键思维导图5、应用广场6、GPTS 二、后台管理功能1、网站自定义2、多账号登录支持3、商品及会员系统4、模型配置5、兑换码生成6、三方商户用户打通 结语 介绍 java语言的私有化部署的商用网站还是比较少的 这里给大家介…...

nmcli --help(nmcli -h)nmcli文档、nmcli手册

文章目录 nmcli --helpOPTION解释OBJECT解释1. g[eneral]&#xff1a;查看NetworkManager的状态2. n[etworking]&#xff1a;启用或禁用网络3. r[adio]&#xff1a;查看无线电状态&#xff08;例如&#xff0c;Wi-Fi&#xff09;4. c[onnection]&#xff1a;列出所有的网络连接…...

SpringBoot集成WebService

1&#xff09;添加依赖 <dependency><groupId>org.apache.cxf</groupId><artifactId>cxf-spring-boot-starter-jaxws</artifactId><version>3.3.4</version><exclusions><exclusion><groupId>javax.validation<…...

C++ Qt开发:QUdpSocket网络通信组件

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍如何运用QUdpSocket组件实现基于UDP的网络通信…...

微信小程序小白易入门基础教程1

微信小程序 基本结构 页面配置 页面配置 app.json 中的部分配置&#xff0c;也支持对单个页面进行配置&#xff0c;可以在页面对应的 .json 文件来对本页面的表现进行配置。 页面中配置项在当前页面会覆盖 app.json 中相同的配置项&#xff08;样式相关的配置项属于 app.js…...

D. Tandem Repeats? - 思维 + 双指针

题面 分析 s s s的范围很小&#xff0c;可以 O ( n 2 ) O(n^2) O(n2)&#xff0c;在规定复杂度以内来完成枚举所有子串判断是否有满足条件的最大的子串&#xff0c;可以在第一层循环枚举子串长度 d d d&#xff0c;第二层循环枚举左右端点&#xff0c;通过双指针维护区间。对长…...

第十三届蓝桥杯省赛CC++ 研究生组

蓝桥杯2022年第十三届省赛真题-裁纸刀 蓝桥杯2022年第十三届省赛真题-灭鼠先锋 蓝桥杯2022年第十三届省赛真题-质因数个数 求个数&#xff0c;则只需要计数即可。求啥算啥&#xff0c;尽量不要搞多余操作 蓝桥杯2022年第十三届省赛真题-选数异或 蓝桥杯2022年第十三届省赛真题…...

Oracle中的commit与rollback

SQL语言分为五大类&#xff1a; DDL(数据定义语言:DataDefinitionLanguage) - Create、Alter、Drop 这些语句自动提交&#xff0c;无需用Commit提交。 DQL(数据查询语言:DataQueryLanguage) - Select 查询语句不存在是否提交问题。 DML(数据操纵语言:DataManipulationLangua…...

鸿蒙Harmony应用开发—ArkTS声明式开发(画布组件:OffscreenCanvasRenderingContext2D)

使用OffscreenCanvasRenderingContext2D在Canvas上进行离屏绘制&#xff0c;绘制对象可以是矩形、文本、图片等。离屏绘制是指将需要绘制的内容先绘制在缓存区&#xff0c;然后将其转换成图片&#xff0c;一次性绘制到canvas上&#xff0c;加快了绘制速度。 说明&#xff1a; 从…...

Redis如何实现主从复制?主从复制的作用是什么?Redis集群是如何工作的?它有哪些优点和缺点?

Redis如何实现主从复制&#xff1f;主从复制的作用是什么&#xff1f; Redis的主从复制是一种数据复制机制&#xff0c;其中一个Redis实例作为主节点&#xff08;master&#xff09;&#xff0c;而其他Redis实例作为从节点&#xff08;slave&#xff09;。主从复制的实现过程如…...

【Numpy】(2)numpy对象和random模块

numpy.array对象 numpy.array 对象是 NumPy 库的核心&#xff0c;它提供了一种高效的方式来存储和操作同质数据类型的多维数组。每个 numpy.array 对象都有一系列的属性&#xff0c;这些属性提供了关于数组的重要信息。理解这些属性对于有效地使用 NumPy 和进行数据分析是非常…...

[QJS xmake] 非常简单地在Windows下编译QuickJS!

文章目录 前言准备C编译器xmake编译包 工程准备修改版本号第一遍编译第二遍编译效果 前言 quickjs是个很厉害的东西啊&#xff0c;我一直想编译一下的&#xff0c;奈何一直没成功。现在找了点时间成功编译了&#xff0c;写篇文章记录一下。当前版本&#xff1a;2024-1-13 应该…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...