JVM(六)——内存模型与高效并发
内存模型与高效并发
一、java 内存模型
【java 内存模型】是 Java Memory Model(JMM)
简单的说,JMM 定义了一套在多线程读写共享数据时(成员变量、数组)时,对数据的可见性、有序
性、和原子性的规则和保障
1)原子性
原子性在学习线程时讲过,下面来个例子简单回顾一下:
问题提出,两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?
2)问题分析
以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作。

3)解决方法
使用 synchronized(同步关键字)
synchronized( 对象 ) {要作为原子操作代码
}
注意:上例中 t1 和 t2 线程必须用 synchronized 锁住同一个 obj 对象,如果 t1 锁住的是 m1 对
象,t2 锁住的是 m2 对象,就好比两个人分别进入了两个不同的房间,没法起到同步的效果。
二、可见性
1)退不出的循环
一种现象,main 线程对另一个线程 t 中的变量的修改不可见。


由于t 线程需要反复调用 run 变量,JIT 会把 run 变量放在 工作内存中的高速缓存中,不需要从总内存中读取。

所以即使更改主内存中的 run 变量,也无法改变高速缓存中的 run 变量, t 线程会一直运行。
2)解决方法
volatile(易变关键字)。一般避免使用 volatile,因为不能保证线程的安全。而使用 synchronized 关键字既可以保证线程的可见性又可以保证线程的原子性。
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到
主存中获取它的值,线程操作 volatile 变量都是直接操作主存
3)可见性
volatile 只是保证多线程之间的可见性,不保证原子性,即不保证多线程安全性。仅用在一个写线程,多个读线程的情况
synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。但缺点是 synchronized 是属于重量级操作,性能相对更低。
如果在前面示例的死循环中加入 System.out.println() 会发现即使不加 volatile 修饰符,线程 t 也能正确看到对 run 变量的修改了,因为 println() 方法底层 使用了 synchronized 关键字,使用 synchronized 关键字会清理缓存。
三、有序性
1)诡异的结果
int num = 0;
boolean ready = false;
// 线程1 执行此方法
public void actor1(I_Result r) {if(ready) {r.r1 = num + num;} else {r.r1 = 1;}
}
// 线程2 执行此方法
public void actor2(I_Result r) {num = 2;ready = true;
}
情况1:线程1 先执行,这时 ready = false,所以进入 else 分支结果为 1
情况2:线程2 先执行 num = 2,但没来得及执行 ready = true,线程1 执行,还是进入 else 分支,结果为1
情况3:线程2 执行到 ready = true,线程1 执行,这回进入 if 分支,结果为 4(因为 num 已经执行过了)
结果还有可能是 0。
这种情况下是:线程2 执行 ready = true,切换到线程1,进入 if 分支,相加为 0,再切回线程2 执行num = 2。
这种现象叫做指令重排,是 JIT 编译器在运行时的一些优化,这个现象需要通过大量测试才能复现
2)解决方法
volatile 修饰的变量,可以禁用指令重排
3)有序性理解
JVM 在不影响正确性的前提下,可以调整语句的执行顺序。这种特性称之为【指令重排】,多线程下【指令重排】会影响正确性,例如著名的 double-checked locking 模式实现单例。
public final class Singleton {private Singleton() { }private static Singleton INSTANCE = null;public static Singleton getInstance() {// 实例没创建,才会进入内部的 synchronized代码块if (INSTANCE == null) {synchronized (Singleton.class) {// 也许有其它线程已经创建实例,所以再判断一次if (INSTANCE == null) {INSTANCE = new Singleton();}}}return INSTANCE;}
}
以上的实现特点是:
懒惰实例化
首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
但在多线程环境下,上面的代码是有问题的, 如果有两个线程,一个线程为 INSTANCE 分配了空间,INSTANCE != null,但还未进行初始化操作,另一个线程在 INSTANCE != null时,直接返回了未初始化完成的单例。
对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才
会真正有效
4)happens-before
happens-before 规定了哪些写操作对其它线程的读操作可见,它是可见性与有序性的一套规则总结,
抛开以下 happens-before 规则,JMM 并不能保证一个线程对共享变量的写,对于其它线程对该共享变
量的读可见
- 线程解锁 m 之前对变量的写,对于接下来对 m 加锁的其它线程对该变量的读可见
- 线程对 volatile 变量的写,对接下来其它线程对该变量的读可见
- 线程 start 前对变量的写,对该线程开始后对该变量的读可见
- 线程结束前对变量的写,对其它线程得知它结束后的读可见(比如其它线程调用 t1.isAlive() 或 t1.join()等待它结束)
- 线程 t1 打断 t2(interrupt)前对变量的写,对于其他线程得知 t2 被打断后对变量的读可见(通过t2.interrupted 或 t2.isInterrupted)
- 对变量默认值(0,false,null)的写,对其它线程对该变量的读可见
- 具有传递性,如果 x hb-> y 并且 y hb-> z 那么有 x hb-> z
四、CAS 与 原子类
1)CAS
CAS 即 Compare and Swap, 它体现的是一种乐观锁的思想,比如多个线程要对一个共享的整型变量执行 +1 操作:
// 需要不断尝试
while(true) {int 旧值 = 共享变量 ; // 比如拿到了当前值 0int 结果 = 旧值 + 1; // 在旧值 0 的基础上增加 1 ,正确结果是 1/*这时候如果别的线程把共享变量改成了 5,本线程的正确结果 1 就作废了,这时候compareAndSwap 返回 false,重新尝试,直到:compareAndSwap 返回 true,表示我本线程做修改的同时,别的线程没有干扰*/if( compareAndSwap ( 旧值, 结果 )) {// 成功,退出循环}
}
获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。结合 CAS 和 volatile 可以实现无
锁并发,适用于竞争不激烈、多核 CPU 的场景下。
- 因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
- 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响
CAS 底层依赖于一个 Unsafe 类来直接调用操作系统底层的 CAS 指令。
2)乐观锁与悲观锁
- CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
- synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁
你们都别想改,我改完了解开锁,你们才有机会。
3)原子操作类
juc(java.util.concurrent)中提供了原子操作类,可以提供线程安全的操作,例如:AtomicInteger、
AtomicBoolean等,它们底层就是采用 CAS 技术 + volatile 来实现的。
五、synchronized 优化
synchronized 是一个重量级锁,如果要阻塞或唤醒一条线程,则需要操作系统来帮忙完成,这就不可避免的陷入用户态到内核态的转换中,进行这种转换需要耗费很多的处理器时间,状态转换消耗的时间甚至会比用户代码本身执行的时间还要长。
但 synchronized有非常大的优化余地,JDK 6 之后synchronized synchronized与ReentrantLock的性能基本上能够持平。
Java HotSpot 虚拟机中,每个对象都有对象头(包括 class 指针和 Mark Word)。Mark Word 平时存
储这个对象的 哈希码 、 分代年龄 ,当加锁时,这些信息就根据情况被替换为 标记位 、 线程锁记录指
针 、 重量级锁指针 、 线程ID 等内容
1)轻量级锁
如果一个对象虽然有多线程访问,但多线程访问的时间是错开的(也就是没有竞争),那么可以使用轻量级锁来优化。
每个线程都的栈帧都会包含一个锁记录的结构,内部可以存储锁定对象的 Mark Word

轻量级锁的解锁过程是通过CAS操作来进行的。
如果出现两条以上的线程争用同一个锁的情况,那轻量级锁就不再有效,必须要膨胀为重量级锁,锁标志
的状态值变为“10”,此时Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也必须进入阻塞状态。
2)锁膨胀
如果在尝试加轻量级锁的过程中,CAS 操作无法成功,这时一种情况就是有其它线程为此对象加上了轻
量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。
3)重量级锁
重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退
出了同步块,释放了锁),这时当前线程就可以避免阻塞。
在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能
性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
- 自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。
- 好比等红灯时汽车是不是熄火,不熄火相当于自旋(等待时间短了划算),熄火了相当于阻塞(等
待时间长了划算) - Java 7 之后不能控制是否开启自旋功能
4)偏向锁
轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。
Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现这个线程 ID是自己的就表示没有竞争,不用重新 CAS。
偏向锁中的“偏”,就是偏心的“偏”、偏袒的“偏”。它的意思是这个锁会偏向于第一个获得它的线
程,如果在接下来的执行过程中,该锁一直没有被其他的线程获取,则持有偏向锁的线程将永远不需
要再进行同步。
偏向锁可以提高带有同步但无竞争的程序性能,但它同样是一个带有效益权衡(Trade Off)性质的优化,也就是说它并非总是对程序运行有利。如果程序中大多数的锁都总是被多个不同的线程访问,那偏向模式就是多余的。在具体问题具体分析的前提下,有时候使用参数-XX:-UseBiasedLocking来禁止偏向锁优化反而可以提升性能。
5)其他优化
1.减少上锁时间
同步代码块中尽量短
2.减少锁的粒度
将一个锁拆分为多个锁提高并发度,例如:
- ConcurrentHashMap
- LongAdder 分为 base 和 cells 两部分。没有并发争用的时候或者是 cells 数组正在初始化的时候,会使用 CAS 来累加值到 base,有并发争用,会初始化 cells 数组,数组有多少个 cell,就允许有多少线程并行修改,最后将数组中每个 cell 累加,再加上 base 就是最终的值
- LinkedBlockingQueue 入队和出队使用不同的锁,相对于LinkedBlockingArray只有一个锁效率要高
3. 锁粗化
多次循环进入同步代码块不如同步块内多次循环
另外 JVM 可能会做如下优化,把多次 append 的加锁操作粗化为一次,(因为都是对同一个对象加锁,
没必要重入多次)
new StringBuffer().append("a").append("b").append("c");
4. 锁消除
JVM 会进行代码的逃逸分析,例如某个加锁对象是方法内局部变量,不会被其它线程所访问到,这时候
就会被即时编译器忽略掉所有同步操作。
5. 读写分离
CopyOnWriteArrayList
ConyOnWriteSet
参考:
https://wiki.openjdk.java.net/display/HotSpot/Synchronization
http://luojinping.com/2015/07/09/java锁优化/
https://www.infoq.cn/article/java-se-16-synchronized
https://www.jianshu.com/p/9932047a89be
https://www.cnblogs.com/sheeva/p/6366782.html
https://stackoverflow.com/questions/46312817/does-java-ever-rebias-an-individual-lock
相关文章:
JVM(六)——内存模型与高效并发
内存模型与高效并发 一、java 内存模型 【java 内存模型】是 Java Memory Model(JMM) 简单的说,JMM 定义了一套在多线程读写共享数据时(成员变量、数组)时,对数据的可见性、有序 性、和原子性的规则和保障…...
C++:关键字(4)
在c中的关键字就是我们各个写的各种代码 这些就是关键字,这些东西是无法当参数的,比如在给变量名设置为int那就不行 这就是个错的 在写其他的参数时候,不可以使用关键词作为参数...
STM32串口收发单字节数据原理及程序实现
线路连接: 显示屏的SCA接在B11,SCL接在B10,串口的RX连接A9,TX连接A10。 程序编写: 在上一个博客中实现了串口的发送代码,这里实现串口的接收代码,在上一个代码的基础上增加程序功能。 Seiral.…...
openGauss + Datakit搭建openGauss运维平台
系统架构OS 硬件需求:2c4g [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) [rootlocalhost ~]# uname -m x86_64 [rootlocalhost ~]# hostname -I 192.168.92.32 下载地址:https://opengauss.org/zh/download/ 下载…...
【疑惑】-谷歌是如何获取数据的
搜索引擎爬虫: 谷歌的搜索引擎通过爬虫程序在互联网上爬取和收集网页信息。这些爬虫会遵循特点的算法和规则,访问内容,并且提取出关键信息 用户的搜索行为: 当用户使用谷歌搜索引擎进行搜索的时候,谷歌会收集分析用户…...
Java static和继承
static特点 Java中的static关键字允许在没有创建类的实例的情况下进行调用。以下是static关键字的主要用途和特点: 静态变量(类变量):使用static关键字声明的变量称为静态变量或类变量。这些变量属于类本身,而不是类…...
亲身体验!人工智能对话无障碍 —— BRClient 使用指南
01 概述 BRClient 这个名字来源于“Bedrock Client”的简称,寓意是为用户提供一个坚实的基础。BRClient 作为一个开源的桌面应用,为用户提供了友好的图形界面,让每个人都能够轻松访问和使用 Claude 3 的强大功能。用户可以自定义 Claude 3 的…...
【数据库管理操作】Mysql 创建学生数据库及对数据表进行修改
MySQL 创建学生成绩数据库 1.创建数据库 create database studentscore;创建完成之后,如果需要使用该数据,使用use命令 use studentscore;创建表前查看当前数据库中包含的表 show tables; 2.创建bclass表 create table bclass( class_id char(8) …...
vue2 export default写法,computed、methods的使用
<template><div><h2>{{nameAll}}</h2><h2>{{method}}</h2><h2>{{tt()}}</h2><h2>{{firstName}}</h2><h2>更新后赋值数据:{{lastName}}</h2><h2>赋值数据:{{writeValue}}</h2>…...
负氧离子监测站:创造健康生活环境
TH-FZ5在蓝天白云之下,那一座座高耸的全彩屏负氧离子监测站,如同一支支科技的绿芽,静静破土而出,为这片土地带来了新的生命力。这些现代化的设备不仅美化了环境,更是我们呼吸健康守护者,它们的存在让我们的…...
【jvm】young gc full gc
何时触发YoungGC或FullGC YoungGC的触发时常在发生,当新生代的Eden区满了之后就会触发YoungGC。 FullGC在多个情况下都会被触发: 1、发生Young GC之前进行检查,如果“老年代可用的连续内存空间” < “新生代历次Young GC后升入老年代的对象…...
2024年腾讯云服务器租用价格_轻量和CVM报价
腾讯云服务器价格表2024年最新价格,轻量2核2G3M服务器61元一年、2核2G4M服务器99元1年,三年560元、2核4G5M服务器165元一年、3年900元、轻量4核8M12M服务器646元15个月、4核16G10M配置32元1个月、8核32G配置115元1个月,345元3个月。CVM云服务…...
【go从入门到精通】for循环控制
作者简介: 高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C,go等语言开发经验,mysql,mongo,redis等数据库,设计模…...
<chrono>, clock_gettime(), gettimeofday()对比
精度(Precision): <chrono>: 提供了纳秒级别的精度,可以满足大多数应用的需求。clock_gettime(): 提供了纳秒级别的精度,与 <chrono> 相当。gettimeofday(): 提供了微秒级别的精度,相对于前两者…...
基于 YAML 接口自动化测试框架设计
在设计自动化测试框架的时候,我们会经常将测试数据保存在外部的文件(如Excel、YAML、CSV),或者数据库中,实现脚本与数据解耦,方便后期维护。目前非常多的自动化测试框架采用通过Excel或者YAML文件直接编写测…...
团体程序设计天梯赛 L2-031 深入虎穴
L2-3深入虎穴 分数 25 名的王牌间谍 007 需要执行一次任务,获取敌方的机密情报。已知情报藏在一个地下迷宫里,迷宫只有一个入口,里面有很多条通路,每条路通向一扇门。每一扇门背后或者是一个房间,或者又有很多条路&a…...
基于Givens旋转完成QR分解进而求解实矩阵的逆矩阵
基于Givens旋转完成QR分解进而求解实矩阵的逆矩阵 目录 前言 一、Givens旋转简介 二、Givens旋转解释 三、Givens旋转进行QR分解 四、Givens旋转进行QR分解数值计算例子 五、求逆矩阵 六、MATLAB仿真 七、参考资料 总结 前言 在进行QR分解时,HouseHolder变换…...
学习使用xbox手柄控制小乌龟节点移动
使用xbox手柄控制小乌龟,首先要下载joy功能包,发布sensor_msgs话题也就是手柄和ros通信的话题。 下载的步骤就根据官方文档即可 joy/Tutorials/ConfiguringALinuxJoystick - ROS Wiki 这里我提供一下具体步骤 第一步 安装joy 首先安装对应系统版本的…...
OpenLayers6实战,OpenLayers绘制特殊图形,OpenLayers绘制四角形(菱形),OpenLayers绘制菱形
专栏目录: OpenLayers实战进阶专栏目录 前言 本章讲解如何使用OpenLayers6实现绘制特殊图形,以绘制四角形(菱形),OpenLayers绘制菱形的功能为例。 本章核心代码不依赖任何第三方插件,只依赖OpenLayers。 需要注意的是两个操作按钮需要引入ElementUI 二、依赖和使用 &q…...
虚拟机如何在原有磁盘上扩容
虚拟机未开启状态–菜单栏–虚拟机–快照–拍摄快照–拍摄快照– 菜单栏–虚拟机–快照–快照管理器–点击刚刚的快照1–删除–是– 文件–新建或者打开–硬盘(以本人Win 10.64.3GL为例)–虚拟机设置–硬件– 硬盘(SATA)–磁盘实…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
