OpenGL的MVP矩阵理解
OpenGL的MVP矩阵理解
右手坐标系
右手坐标系与左手坐标系都是三维笛卡尔坐标系,他们唯一的不同在于z轴的方向,如下图,左边是左手坐标系,右边是右手坐标系
OpenGL
中一般用的是右手坐标系
1.模型坐标系(Local Space)
模型坐标系(或者叫本地坐标系、局部坐标系,本文后面统一称模型坐标系)顾名思义,就是以物体的正中心为原点的坐标系,通常,我们从三维软件中导出的模型基本是局部坐标系,以模型的中心为原点,其他顶点相对于模型的原点来定义。
2. 世界坐标系 (World Space)
世界坐标系就是全局的那个坐标系,我们的物体,以及后面观察物体用到的摄像机全都在世界坐标系中,原点为(0,0,0)
3. 视图坐标系(View Space)
视图坐标系也就是在世界坐标系中通过假想一个摄像机或者观察者的存在,以摄像机的位置为中心原点,然后从摄像机这个观察者的角度去重新计算世界中的物体相对于摄像机原点的坐标
什么是MVP矩阵?
MVP矩阵分别是模型(Model)、观察(View)、投影(Projection)三个矩阵。
gl_Position = projection * view * model * vec4(x,y,z, 1.0);
模型(Model)矩阵
模型矩阵主要做的旋转、缩放、平移操作
案例:
按世界坐标(0,0,0)为原点,绘制一个正方体如下图,这时候,模型坐标系和世界坐标系原点是重合的,A为正方体的左上前方位置坐标。对应坐标(-0.5,0.5,0.5)
如果,绘制10个,分别进行旋转、平移、缩放,对应如下图,对应的每个3维正方体,对应世界坐标的位置(0,0,0),对应的A的坐标,模型坐标系还是(-0.5,0.5,0.5),那个世界坐标呢?就是A(-0.5,0.5,0.5)进行旋转、平移、缩放的坐标
对应具体矩阵看该章节
第四章 OpenGL ES 基础-位移、缩放、旋转原理
[
观察(View)矩阵
OpenGL中其实不存在专门的相机,view矩阵的目的就是确定物体与相机的相对位置。注意,此处的物体指的是全部的物体形成的集合,也就是案例中的十个正方体形成的组,而不是某个单一物体
先简单的把相机的位置按世界坐标系相对相机cameraPos(0,0,-3)按轴进行观察,想看到物体看起来变得更远,可以此时物体位于相对相机(0,0,-5),相机位置在z轴更远,正方体更小。这里说明一下视图坐标系,如果按视图坐标系原点cameraTarget(0,0,0),世界坐标系的原点位置就是(0,0,-3)。上图相机观察方向可以自己补充,相对的移动旋转等操作
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, -3.0f);
glm::vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.0f);
glm::vec3 cameraDirection = glm::normalize(cameraPos - cameraTarget);
对应的矩阵变化可以LookAt观察矩阵https://blog.csdn.net/qinze5857/article/details/130505925
投影(Projection)矩阵
投影矩阵为了把3D的渲染在2D的屏幕
第五章 OpenGL ES 基础-透视投影矩阵与正交投影矩阵
上面文章有参考,该文章https://blog.csdn.net/Lindy_pass/article/details/132408991
相关文章:

OpenGL的MVP矩阵理解
OpenGL的MVP矩阵理解 右手坐标系 右手坐标系与左手坐标系都是三维笛卡尔坐标系,他们唯一的不同在于z轴的方向,如下图,左边是左手坐标系,右边是右手坐标系 OpenGL中一般用的是右手坐标系 1.模型坐标系(Local Space&…...

前端超分辨率技术应用:图像质量提升与场景实践探索-设计篇
超分辨率! 引言 在数字化时代,图像质量对于用户体验的重要性不言而喻。随着显示技术的飞速发展,尤其是移动终端视网膜屏幕的广泛应用,用户对高分辨率、高质量图像的需求日益增长。然而,受限于网络流量、存储空间和图像…...

C++11入门手册第一节,学完直接上手Qt(共两节)
入门 hello.cpp #include <iostream>int main() { std::cout << "Hello Quick Reference\n"<<endl; return 0;} 编译运行 $ g hello.cpp -o hello$ ./helloHello Quick Reference 变量 int number 5; // 整数float f 0.95; //…...

Docker部署MinIO对象存储服务
1. 拉取MinIO镜像 # 下载镜像 docker pull minio/minio#查看镜像 docker images2. 创建目录 # 文件存储目录 mkdir -p /opt/minio/data# 配置文件 mkdir -p /opt/minio/config# 日志文件 mkdir -p /opt/minio/logs3. 创建Minio容器并运行 docker run \ -p 9000:9000 \ -p 90…...

基于Echarts的超市销售可视化分析系统(数据+程序+论文)
本论文旨在研究Python技术和ECharts可视化技术在超市销售数据分析系统中的应用。本系统通过对超市销售数据进行分析和可视化展示,帮助决策层更好地了解销售情况和趋势,进而做出更有针对性的决策。本系统主要包括数据处理、数据可视化和系统测试三个模块。…...

使用ai智能写作场景之gpt整理资料,如何ai智能写作整理资料
Ai智能写作助手:Ai智能整理资料小助手 Ai智能整理资料小助手可试用3天! 通俗的解释一下怎么用ChatGPT来进行资料整理: 搜寻并获取指定数量的特定领域文章: 想像你在和我说话一样,告诉我你想要多少篇关于某个话题的文…...

C/C++ 内存管理
1、C/C内存分布 首先我们来了解在一个程序中,代码主要存储在哪些地方; 1.栈:又叫堆栈,其中一般存储非静态局部变量、函数参数、返回值等,栈的增长是向下的。 2.内存映射段:是高效的 I/O 映射方式࿰…...
android pdf框架-10,相册浏览
MupdfViewer 这是最后apk,源码在前面的文章已经贴过了本站下载地址,只是不是最新的.可能不少是旧的内容. subsampling-scale-image-view这是一个大图片的分块加载的实现.比较不错的.滑动方面我觉得使用flinger的效果比它要流畅,惯性要好. 也有人把这个作成pdf渲染器.但翻页就…...

基于SSM的高校普法系统(有报告)。Javaee项目。ssm项目。
演示视频: 基于SSM的高校普法系统(有报告)。Javaee项目。ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Spri…...

数据结构刷题篇 之 【力扣二叉树基础OJ】详细讲解(含每道题链接及递归图解)
有没有一起拼用银行卡的,取钱的时候我用,存钱的时候你用 1、相同的树 难度等级:⭐ 直达链接:相同的树 2、单值二叉树 难度等级:⭐ 直达链接:单值二叉树 3、对称二叉树 难度等级:⭐⭐ 直达…...

Jackson 2.x 系列【6】注解大全篇二
有道无术,术尚可求,有术无道,止于术。 本系列Jackson 版本 2.17.0 源码地址:https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 注解大全2.11 JsonValue2.12 JsonKey2.13 JsonAnySetter2.14 JsonAnyGetter2.15 …...

在低成本loT mcu上实现深度神经网络端到端自动部署-深度神经网络、物联网、边缘计算、DNN加速——文末完整资料
目录 前言 DNN 量化神经网络 并行超低功耗计算范式 面向内存的部署 结果 原文与源码下载链接 REFERENCES 前言 在物联网极端边缘的终端节点上部署深度神经网络( Deep Neural Networks,DNNs )是支持普适深度学习增强应用的关键手段。基于低成本MCU的终端节点…...

【linux】基础IO |文件操作符
需要掌握:操作文件,本质:进程操作文件。进程和文件的关系 向文件中写入,本质上向硬件中写入->用户没有权利直接写入->操作系统是硬件的管理者,我们可以通过操作系统往硬件写入->操作系统必须提供系统调用&…...

探索 2024 年 Web 开发最佳前端框架
前端框架通过简化和结构化的网站开发过程改变了 Web 开发人员设计和实现用户界面的方法。随着 Web 应用程序变得越来越复杂,交互和动画功能越来越多,这是开发前端框架的初衷之一。 在网络的早期,网页相当简单。它们主要以静态 HTML 为特色&a…...
解决: MAC ERROR [internal] load metadata for docker.io/library/openjdk:17
错误信息: ERROR [internal] load metadata for docker.io/library/openjdk:17 ERROR: failed to solve: openjdk:17: error getting credentials - err: exit status 1, out: 解决方法: running this command rm ~/.docker/config.json before …...

View事件分发
MotionEvent 1.简介 MotionEvent 是Android系统中一个非常重要的类,它代表了屏幕上发生的触摸事件。当用户在屏幕上触摸、滑动或者长按时,都会生成一个MotionEvent对象,这个对象包含了触摸动作的各种信息。 2.事件类型 ACTION_DOWN&#x…...
监听页面的使用时间
如果是比较新的vue架构(推荐,参考若依) 监听create()和destory()两个函数,写通用的js调用函数,在路由守卫的时候使用,就可以获取到每个页面停留时间 如果是比…...

【 yolo红外微小无人机-直升机-飞机-飞鸟目标检测】
yolo无人机-直升机-飞机-飞鸟目标检测 1. 小型旋翼无人机目标检测2. yolo红外微小无人机-直升机-飞机-飞鸟目标检测3. yolo细分类型飞机-鸟类-无人机检测4. yolo红外大尺度无人机检测5. 小型固定翼无人机检测6. 大型固定翼无人机检测7. yolo航空俯视场景下机场飞机检测 1. 小型…...

Redis与数据库的一致性
Redis与数据库的数据一致性 在使用Redis作为应用缓存来提高数据的读性能时,经常会遇到Redis与数据库的数据一致性问题。简单来说,就是同一份数据同时存在于Redis和数据库,如何在数据更新的时候,保证两边数据的一致性。首先&#…...
使用maxwell实时同步mysql数据到kafka
一、软件环境: 操作系统:CentOS release 6.5 (Final) java版本: jdk1.8 zookeeper版本: zookeeper-3.4.11 kafka 版本: kafka_2.11-1.1.0.tgz maxwell版本:maxwell-1.16.0.tar.gz 注意 : 关闭所有机器的防火墙,同时注意…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...