当前位置: 首页 > news >正文

绘制特征曲线-ROC(Machine Learning 研习十七)

接收者操作特征曲线(ROC)是二元分类器的另一个常用工具。它与精确度/召回率曲线非常相似,但 ROC 曲线不是绘制精确度与召回率的关系曲线,而是绘制真阳性率(召回率的另一个名称)与假阳性率(FPR)的关系曲线。FPR(也称 “下降率”)是阴性实例被错误归类为阳性实例的比率。它等于 1 - 真阴性率 (TNR),即正确分类为阴性的阴性实例的比率。TNR 也称为特异性。因此,ROC 曲线是灵敏度(召回率)与 1 - 特异性的关系图

要绘制 ROC 曲线,首先要使用 roc_curve()函数计算不同阈值的 TPRFPR

from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores) 

然后可以使用Matplotlib绘制FPRTPR 的对比图。下面的代码可以绘制出 见下图 所示的图形。要找到与 90% 精度相对应的点,我们需要查找所需阈值的索引。由于在这种情况下阈值是按递减顺序排列的,因此我们在第一行使用 <= 而不是 >=

idx_for_threshold_at_90 = (thresholds <= threshold_for_90_precision).argmax() tpr_90, fpr_90 = tpr[idx_for_threshold_at_90], fpr[idx_for_threshold_at_90]plt.plot(fpr, tpr, linewidth=2, label="ROC curve") 
plt.plot([0, 1], [0, 1], 'k:', label="Random classifier's ROC curve") plt.plot([fpr_90], [tpr_90], "ko", label="Threshold for 90% precision") [...]  # beautify the figure: add labels, grid, legend, arrow, and text plt.show()

在这里插入图片描述

这也是一种权衡:召回率(TPR)越高,分类器产生的误报(FPR)就越多。虚线表示纯随机分类器的 ROC 曲线;好的分类器会尽可能远离这条曲线(左上角)。

比较分类器的一种方法是测量曲线下面积(AUC)。完美分类器的 ROC AUC 等于 1,而纯粹随机分类器的 ROC AUC 等于 0.5。Scikit-Learn 提供了一个估算 ROC AUC 的函数:

在这里插入图片描述

由于 ROC 曲线与精确度/召回(PR)曲线非常相似,您可能会想知道如何决定使用哪种曲线。根据经验,如果阳性类别很少,或者您更关心假阳性而不是假阴性,那么您应该首选 PR 曲线。否则,请使用 ROC 曲线。例如,看了前面的 ROC 曲线(和 ROC AUC 分数),你可能会认为分类器真的很不错。但这主要是因为阳性(5 分)与阴性(非 5 分)相比很少。相比之下,PR 曲线清楚地表明分类器还有改进的余地:曲线确实可以更靠近右上角。

现在,让我们创建一个 RandomForestClassifier,将其 PR 曲线和 F1 分数与 SGDClassifier进行比较:

from sklearn.ensemble import RandomForestClassifierforest_clf = RandomForestClassifier(random_state=42) 

precision_recall_curve() 函数需要每个实例的标签和分数,因此我们需要训练随机森林分类器,让它为每个实例分配分数。但由于 RandomForestClassifier类的工作方式,它没有 decision_function() 方法。幸运的是,它有一个 predict_proba()方法,可以返回每个实例的类概率,我们可以直接使用正类的概率作为得分,这样就可以正常工作了。我们可以调用 cross_val_predict() 函数,使用交叉验证训练随机森林分类器,并让它预测每张图片的类概率,如下所示:

y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3,                                    method="predict_proba") 

让我们来看看训练集中前两幅图像的类别概率:

在这里插入图片描述

模型预测第一幅图像为正像的概率为 89%,预测第二幅图像为负像的概率为 99%。由于每幅图像要么是正像,要么是负像,因此每一行的概率相加等于 100%。

这些是估计概率,而不是实际概率。例如,如果您查看所有被模型归类为阳性的图像,估计概率在 50%-60%之间,那么其中大约 94% 的图像实际上是阳性的。因此,在这种情况下,模型的估计概率太低了,但模型也可能过于自信。sklearn.calibration软件包包含校准估计概率的工具,可使其更接近实际概率。

第二列包含正分类的估计概率,我们将其传递给 precision_recall_curve() 函数:

y_scores_forest = y_probas_forest[:, 1] precisions_forest, recalls_forest, thresholds_forest = precision_recall_curve(    y_train_5, y_scores_forest) 

现在我们可以绘制 PR 曲线了。同时绘制第一条 PR 曲线,以了解两者之间的比较(见下图)

plt.plot(recalls_forest, precisions_forest, "b-", linewidth=2,         label="Random Forest") plt.plot(recalls, precisions, "--", linewidth=2, label="SGD") [...]  # beautify the figure: add labels, grid, and legend plt.show()

在这里插入图片描述

如图所示,RandomForestClassifier 的 PR 曲线比 SGDClassifier 好看得多:更接近右上角。其 F1 分数和 ROC AUC 分数也明显更好:

在这里插入图片描述

试着测量一下精确度和召回率:你会发现精确度约为 99.1%,召回率约为 86.6%。还不错!

现在,您已经知道如何训练二元分类器、为任务选择合适的指标、使用交叉验证评估分类器、选择适合您需要的精确度/召回率权衡,以及使用多种指标和曲线来比较各种模型。您已经准备好尝试检测更多信息,而不仅仅是 “5”。

相关文章:

绘制特征曲线-ROC(Machine Learning 研习十七)

接收者操作特征曲线&#xff08;ROC&#xff09;是二元分类器的另一个常用工具。它与精确度/召回率曲线非常相似&#xff0c;但 ROC 曲线不是绘制精确度与召回率的关系曲线&#xff0c;而是绘制真阳性率&#xff08;召回率的另一个名称&#xff09;与假阳性率&#xff08;FPR&a…...

.Net 知识杂记

记录平日中琐碎的.net 知识点。不定期更新 目标框架名称(TFM) 我们创建C#应用程序时&#xff0c;在项目的工程文件(*.csproj)中都有targetFramework标签&#xff0c;以表示项目使用的目标框架 各种版本的TFM .NET Framework .NET Standard .NET5 及更高版本 UMP等 参考文档&a…...

海豚【货运系统源码】货运小程序【用户端+司机端app】源码物流系统搬家系统源码师傅接单

技术栈&#xff1a;前端uniapp后端vuethinkphp 主要功能&#xff1a; 不通车型配置不通价格参数 多城市定位服务 支持发货地 途径地 目的地智能费用计算 支持日期时间 预约下单 支持添加跟单人数选择 支持下单优惠券抵扣 支持司机收藏订单评价 支持订单状态消息通知 支…...

01---java面试八股文——mybatis-------10题

1、什么是MyBatis Mybatis是一个半ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;它内部封装了JDBC&#xff0c;开发时只需要关注SQL语句本身&#xff0c;不需要花费精力去处理加载驱动、创建连接、创建statement等繁杂的过程。程序员直接编写原生态sql&#xff0c…...

增强现实(AR)的开发工具

增强现实&#xff08;AR&#xff09;的开发工具涵盖了一系列的软件和平台&#xff0c;它们可以帮助开发者创造出能够将虚拟内容融入现实世界的应用程序。以下是一些在AR领域内广泛使用的开发工具。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎…...

用Unity制作正六边形拼成的地面

目录 效果演示 1.在Unity中创建正六边形 2.创建一个用于管理正六边形的类 3.创建一个用于管理正六边形地面的类 4.创建一个空对象并将游戏控制脚本挂上 5.设置正六边形碰撞所需组件 6.创建正六边形行为触发脚本并挂上 7.创建圆柱体——田伯光 8.创建圆柱体移动脚本 运…...

Spark部署详细教程

Spark Local环境部署 下载地址 https://dlcdn.apache.org/spark/spark-3.4.2/spark-3.4.2-bin-hadoop3.tgz 条件 PYTHON 推荐3.8JDK 1.8 Anaconda On Linux 安装 本次课程的Python环境需要安装到Linux(虚拟机)和Windows(本机)上 参见最下方, 附: Anaconda On Linux 安装…...

慧天[HTWATER]:创新城市水务科技,引领行业变革

【城市内涝水文水动力模型介绍】 慧天[HTWATER]软件&#xff1a;慧天排水数字化分析平台针对城市排水系统基础设施数据管理的需求&#xff0c;以及水文、水力及水质模拟对数据的需求&#xff0c;实现了以数据库方式对相应数据的存储。可以对分流制排水系统及合流制排水系统进行…...

vscode调试Unity

文章目录 vscode调试UnityC#环境需求开始调试 Lua添加Debugger环境配置联系.txt文件配置Java环境 添加调试代码断点不生效的问题 vscode调试Unity C# 现在使用vscode调试Unity的C#代码很简单&#xff0c;直接在vscode的EXTENSIONS里面搜索“Unity”&#xff0c;第一个就是&am…...

JavaScript是如何实现页面渲染的

JavaScript实现页面渲染主要涉及到对DOM的操作、样式的修改以及与后端数据的交互。以下是JavaScript实现页面渲染的主要步骤和方式&#xff1a; 一、DOM操作 创建和修改元素&#xff1a;JavaScript可以使用document.createElement()来创建新的DOM元素&#xff0c;使用appendC…...

【YOLOv8 代码解读】数据增强代码梳理

1. LetterBox增强 当输入图片的尺寸和模型实际接收的尺寸可能不一致时&#xff0c;通常需要使用LetterBox增强技术。具体步骤是先将图片按比例缩放&#xff0c;将较长的边缩放到设定的尺寸以后&#xff0c;再将较短的边进行填充&#xff0c;最终短边的长度为stride的倍数即可。…...

安卓调试桥ADB

Logcat 命令行工具 | Android Studio | Android Developers 什么是ADB ADB 全称为 Android Debug Bridge &#xff0c;是 Android SDK &#xff08;安卓的开发工具&#xff09;中的一个工具&#xff0c;起到调试桥的作用&#xff0c;是一个 客户端 - 服务器端程序 。其中 …...

深入理解数据结构第一弹——二叉树(1)——堆

前言&#xff1a; 在前面我们已经学习了数据结构的基础操作&#xff1a;顺序表和链表及其相关内容&#xff0c;今天我们来学一点有些难度的知识——数据结构中的二叉树&#xff0c;今天我们先来学习二叉树中堆的知识&#xff0c;这部分内容还是非常有意思的&#xff0c;下面我们…...

面试题:JVM的垃圾回收

一、GC概念 为了让程序员更专注于代码的实现&#xff0c;而不用过多的考虑内存释放的问题&#xff0c;所以&#xff0c;在Java语言中&#xff0c;有了自动的垃圾回收机制&#xff0c;也就是我们熟悉的GC(Garbage Collection)。 有了垃圾回收机制后&#xff0c;程序员只需要关…...

Java8之接口默认方法

Java8之接口默认方法 一、介绍二、代码1、接口2、实现类3、测试代码4、效果 一、介绍 在Java8中&#xff0c;允许为接口方法提供一个默认的实现。必须用default修饰符标记这样一个方法。默认方法也可以调用其他方法 二、代码 1、接口 public interface PersonService {void…...

发挥ChatGPT潜力:高效撰写学术论文技巧

ChatGPT无限次数:点击直达 发挥ChatGPT潜力&#xff1a;高效撰写学术论文技巧 在当今信息爆炸的时代&#xff0c;如何高效撰写学术论文成为许多研究者关注的焦点。而随着人工智能技术的不断发展&#xff0c;如何利用ChatGPT这一先进的技术工具来提升论文写作效率&#xff0c;成…...

国产暴雨AI服务器X3418开启多元自主可控新篇章

在当前数字化转型的大潮中&#xff0c;算力作为新质生产力的重要动力引擎&#xff0c;对推动经济社会发展起着关键作用。尤其在人工智能领域&#xff0c;随着高性能、安全可控的AI算力需求持续攀升&#xff0c;国产化服务器的研发与应用显得尤为迫切。 作为国内专业的算力基础…...

webpack-dev-server 如何直接用IP打开

当你需要使用IP来访问服务器时&#xff0c;可能需要对 webpack-dev-server 进行相关设置&#xff1b; 当你使用PD虚拟机在Windows上调试时&#xff0c;可能会用到&#xff1b; 一、设置 host 通过webpack.config.js设置 devServer: {host: 0.0.0.0, }通过CLI设置 webpack-dev-s…...

Web框架开发-BBS项目预备知识

一、简介 博客系统(cnblog) https://www.cnblogs.com/ 1.django ORM (object relation mapping 对象关系映射) 表 = 类 对象 = 记录跨表查询 分组查询 annotate() 聚合查询 aggregate(*args, **kwargs) 2.bootstrap3.Ajax (jquery javascript) --- javascript 去写…...

力扣208---实现Trie(前缀树)

题目描述&#xff1a; Trie&#xff08;发音类似 "try"&#xff09;或者说 前缀树 是一种树形数据结构&#xff0c;用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景&#xff0c;例如自动补完和拼写检查。 请你实现 Trie 类&#xff1a; …...

书生·浦语大模型开源体系(一)论文精读笔记

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…...

基于单片机模糊算法温度控制系统设计

**单片机设计介绍&#xff0c; 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机模糊算法温度控制系统设计是一个综合性的项目&#xff0c;结合了单片机技术、传感器技术、模糊控制算法等多个方面。以下是对该设计的概要…...

GESP Python编程四级认证真题 2024年3月

Python 四级 2024 年 03 月 1 单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 第 1 题 小杨的父母最近刚刚给他买了一块华为手表&#xff0c;他说手表上跑的是鸿蒙&#xff0c;这个鸿蒙是&#xff1f;&#xff08; &#xff09; A. 小程序 B. 计时器 C. 操作系统…...

Collection与数据结构 顺序表与ArrayList

1. 线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列… 线性表在逻辑上是线性结构&#xff0c;也就说是连续的一条直线。但是在…...

pytorch | torchvision.transforms.CenterCrop

torchvision.transforms.CenterCrop&#xff1e;从图像中心裁剪图片 transforms.CenterCrop torchvision.transforms.CenterCrop(size) 功能&#xff1a;从图像中心裁剪图片 size: 所需裁剪的图片尺寸 transforms.CenterCrop(196)的效果如下&#xff1a; &#xff08;也可…...

在Debian 11上安装GCC

GCC&#xff08;GNU Compiler Collection&#xff09;是一个功能强大的工具集合&#xff0c;可用于将不同编程语言的源代码编译成可执行文件或库。它支持多种编程语言&#xff0c;包括C、C、Java、Objective-C、Go、Fortran、Ada等。在Debian 11上安装GCC非常简单&#xff0c;以…...

kafka部署之简单密钥

一、说明 centos7.9kafka_2.13-2.7.0.tgzapache-zookeeper-3.8.0-bin.tar.gz官方文档&#xff1a;Apache Kafka 二、kafka配置 2.1、server.properties server.properties修改或增加如下配置 listenersSASL_PLAINTEXT://你的主机ip:9092 super.usersUser:admin authorizer…...

大模型重塑电商,淘宝、百度、京东讲出新故事

配图来自Canva可画 随着AI技术日渐成熟&#xff0c;大模型在各个领域的应用也越来越深入&#xff0c;国内互联网行业也随之进入了大模型竞赛的后半场&#xff0c;开始从“百模大战”转向了实际应用。大模型从通用到细分垂直领域的跨越&#xff0c;也让更多行业迎来了新的商机。…...

用静态工厂方法代替构造器

用静态工厂方法来代替构造方法。 public class Student {private String name;private int age;private String studentId;private Student(String name, int age, String studentId) {this.name name;this.age age;this.studentId studentId;}public static Student creat…...

Discourse 最多允许有几个分类级别

和 DISCUZ 不同&#xff0c;DISCUZ 可以允许分类下面还有分类&#xff0c;再继续分类这种嵌套式分类。 Discourse 最多只允许有 2 个分类。 如果你在已有的分类下再继续分类的话&#xff0c;系统会提示错误&#xff1a; 意思就是子分类不能再分子分类。 Discourse 尽量采取了…...

宝安建设网站/seo主管招聘

对于G的子群A&#xff0c;为什么我们称子群A对G的陪集个数[G:A]为A对G的指数呢&#xff1f;这种说法其实是非常直观形象的&#xff0c;在说明这点前&#xff0c;我们先引出循环群的定义。&#xff08;定义2.6.1&#xff09;循环群。由一个元素反复运算生成的群 称为循环群&…...

wordpress文章文件/网页制作的基本步骤

医疗样品收集管市场的企业竞争态势 该报告涉及的主要国际市场参与者有ELITech Group、Radiometer Medical、F.L. Medical、Sarstedt、Improve Medical、BD、ALIFAX、Nuova Aptaca、PLASTI LAB、O InterVacTechnology、Biosigma、Vital Diagnostics、ENVASES FARMACEUTICOS、Ten…...

b2b电子商务网站分类/seo是哪个英文的简写

引言概率密度期望和协方差 Expectations and covariances1加权平均值2 多变量权重3 条件期望4 函数方差5 协方差 Bayesian Probability5高斯分布重回多项式拟合1理解误差函数2 理解规则化 贝叶斯曲线拟合 主要讲解了贝叶斯概率与统计派概率的不同。概率论&#xff0c;决策论&am…...

福鼎市建设局网站/百度上如何发广告

一、分类二、说明的顺序三、说明的方法详情点击下方链接哦~初中语文阅读理解说明文基本知识四、说明文的语言品析&#xff1a; ‍ 对整篇文章语文的品析&#xff0c;一般从两个角度谈&#xff1a;a、准确&#xff1b;b、形象生动或简明平实。a是一般说明文的共同特点。b是针…...

武汉代做企业网站/sem是什么职位

6月8日阿诺老师的直播获得了大家的一致好评&#xff0c;为了照顾未能赴约的朋友们&#xff0c;我们将分3段视频回放视频的重要教学环节。期待下一次的直播&#xff0c;同时我们开始征集下次直播的内容&#xff0c;请小伙伴们留言告知你们最想了解的教学内容。我们的直播地址(欢…...

wordpress评论采集插件/新手seo要学多久

接口与类的调用在java并发编程开发项目中是非常常见的一种开发需求&#xff0c;而今天我们就通过案例分析来了解一下&#xff0c;java并发编程常见的接口与类都有哪些类型。1、接口:ConditionCondition为接口类型&#xff0c;它将Object监视器方法(wait、notify和notifyAll)分解…...