当前位置: 首页 > news >正文

数值代数及方程数值解:预备知识——二进制及浮点数

文章目录

    • 二进制
    • IEEE浮点数

本篇文章的前置知识:数学分析

二进制

命题:二进制转化为十进制
二进制的数字表示为 ⋯ b 2 b 1 b 0 . b − 1 b − 2 ⋯ \cdots b_2b_1b_0.b_{-1}b_{-2}\cdots b2b1b0.b1b2这等价于十进制下的
⋯ b 2 × 2 2 + b 1 × 2 1 + b 0 × 2 0 + b − 1 × 2 − 1 + b − 2 × 2 − 2 + ⋯ \cdots b_2\times 2^{2}+b_1\times 2^{1}+b_0\times 2^0+b_{-1}\times 2^{-1}+b_{-2}\times 2^{-2}+\cdots b2×22+b1×21+b0×20+b1×21+b2×22+

命题:十进制转化为二进制
整数部分:十进制整数不断除2,记录除数及余数,直至除数为0,从后往前依次写下余数即为二进制下的数字,如下例 ( 53 ) 10 (53)_{10} (53)10
53 ÷ 2 = 26 余 1 26 ÷ 2 = 13 余 0 13 ÷ 2 = 6 余 1 6 ÷ 2 = 3 余 0 3 ÷ 2 = 1 余 1 1 ÷ 2 = 0 余 1 53\div 2= 26 \text{余} 1\\ 26\div 2=13 \text{余} 0\\ 13\div 2=6 \text{余} 1\\ 6\div 2=3 \text{余} 0\\ 3\div 2=1 \text{余} 1\\ 1\div 2=0 \text{余} 1 53÷2=26126÷2=13013÷2=616÷2=303÷2=111÷2=01则得 ( 53 ) 10 = ( 110101. ) 2 (53)_{10}=(110101.)_2 (53)10=(110101.)2

小数部分:十进制小数不断乘2,记录整数部分,从前往后依次写下整数部分,如下例 ( 0.7 ) 10 (0.7)_{10} (0.7)10
0.7 × 2 = 0.4 + 1 0.4 × 2 = 0.8 + 0 0.8 × 2 = 0.6 + 1 0.6 × 2 = 0.2 + 1 0.2 × 2 = 0.4 + 0 ⋯ 0.7\times 2=0.4+1\\ 0.4\times 2=0.8+0\\ 0.8\times 2=0.6+1\\ 0.6\times 2=0.2+1\\ 0.2\times 2=0.4 +0\\ \cdots 0.7×2=0.4+10.4×2=0.8+00.8×2=0.6+10.6×2=0.2+10.2×2=0.4+0发现计算过程开始循环,故 ( 0.7 ) 10 = ( 0.1 0110 ‾ ) 2 (0.7)_{10}=(0.1\overline{0110})_2 (0.7)10=(0.10110)2

IEEE浮点数

定义:IEEE浮点数
标准的IEEE浮点数为 ± 1. a b c d e f g … z × 2 p \pm 1.abcdefg\dots z \times 2^p ±1.abcdefgz×2p其中 a b c d e f g … z abcdefg\dots z abcdefgz 取值只有 0 或 1
该浮点数在计算机中的储存方式为 1 a b c d e f g … z p 1\hspace{1ex} abcdefg\dots z\hspace{1ex}p 1abcdefgzp
其中

  • 首位表示正负号,0代表正数,1代表负数
  • 后面部分称为尾数,是有效数字
  • 中间部分称为指数,指明小数点的位置

例如:9的2进制表示为1001,浮点数表示为0 11 001,第一个数 0 表示该数为正数,尾数001表示这个数的有效数字为 ( 1.001 ) 2 (1.001)_2 (1.001)2(默认首位为1),第二个数 ( 11 ) 2 = 3 (11)_2=3 (11)2=3表示这个数的指数为3,即把小数点向右移动3位

定义:一般的浮点数系统(描述性定义)
考虑 R \mathbb{R} R 的某离散子集 F \mathrm{F} F F \mathrm{F} F的元素形如 0 或 x = ± m β t β e x=\pm \dfrac{m}{\beta^t}\beta^e x=±βtmβe,其中

  • β \beta β 为不小于2的整数,称为基数;(即 β \beta β 进制)
  • t t t 为不大于1的整数,称为精度;(即该系统能表示的最大位数尾数)
  • m ∈ [ 1 , β t ] m\in[1,\beta^t] m[1,βt]是整数,e为任意整数(即指数);
  • 若限制 m m m 的范围为 [ β t − 1 , β t − 1 ] [\beta^{t-1},\beta^t-1] [βt1,βt1],则可使 m m m 唯一;此时 ± ( m β t ) \pm(\dfrac{m}{\beta^t}) ±(βtm) 称为 x x x 的尾数;

注:对于那些位数超过精度的数字,必须进行截断并舍入(零舍一入),才能保存在计算机中,故浮点数集 F F F 在实数 R \mathbb{R} R 中是离散的

定义:机器 ϵ \epsilon ϵ
ε m a c h i n e = 1 2 β 1 − t \varepsilon_{machine}=\dfrac{1}{2}\beta^{1-t} εmachine=21β1t表示两个相邻的浮点数之间的距离的一半

注:有的书上也定义为两个相邻的浮点数之间的距离

定义:单精度、双精度浮点数

单精度浮点数:1位符号,8位指数,23位尾数, ε m a c h i n e = 2 − 24 \varepsilon_{machine}=2^{-24} εmachine=224

双精度浮点数:1位符号,11位指数,52位尾数, ε m a c h i n e = 2 − 53 \varepsilon_{machine}=2^{-53} εmachine=253

注:
单精度浮点数也称 32 位浮点数 1 + 8 + 23 = 32 1+8+23=32 1+8+23=32
双精度浮点数也称 64 位浮点数 1 + 11 + 52 = 64 1+11+52=64 1+11+52=64

定义:浮点数函数
f l : R → F fl:\mathbb{R}\to F fl:RF 表示将实数映射为离它最近的浮点数的函数

命题:用浮点数保存实数的舍入误差
∀ x ∈ R , ∣ x − f l ( x ) ∣ ∣ x ∣ ≤ ε m a c h i n e \forall x\in\mathbb{R},\dfrac{|x-fl(x)|}{|x|}\leq \varepsilon_{machine} xR,xxfl(x)εmachine或等价地说,
∀ x ∈ R , ∃ ϵ , ∣ ϵ ∣ ≤ ε m a c h i n e , s . t . f l ( x ) = x ( 1 + ϵ ) \forall x\in\mathbb{R},\exists \epsilon,|\epsilon|\leq\varepsilon_{machine},s.t.fl(x)=x(1+\epsilon) xR,ϵ,ϵεmachine,s.t.fl(x)=x(1+ϵ)

浮点数运算的基本公理

任取 x , y ∈ F x,y\in F x,yF,令 ∗ \ast 表示四则运算的任一个, ⊛ \circledast 表示相应的浮点数的四则运算,则 x ⊛ y = f l ( x + y ) x\circledast y=fl(x+y) xy=fl(x+y)

等价地,有如下的浮点数运算公理:
∀ x , y ∈ F , ∃ ϵ , ∣ ϵ ∣ ≤ ε m a c h i n e , s . t . x ⊛ y = ( x ∗ y ) ( 1 + ϵ ) \forall x,y\in F,\exists \epsilon,|\epsilon|\leq\varepsilon_{machine},s.t.x\circledast y=(x\ast y)(1+\epsilon) x,yF,ϵ,ϵεmachine,s.t.xy=(xy)(1+ϵ)

注: ε m a c h i n e \varepsilon_{machine} εmachine定义的修正:将 ε m a c h i n e \varepsilon_{machine} εmachine定义为满足上述公理的最小值,这样定义不会对运算产生显著影响

一般来说,我们使用的计算机是符合浮点数运算的基本公理的

参考书籍
《数值分析》Timothy Sauer 著,裴玉茹,马赓宇 译
《Numerical Linear Algebra》Lloyd N.Trefethen , David Bau 著

相关文章:

数值代数及方程数值解:预备知识——二进制及浮点数

文章目录 二进制IEEE浮点数 本篇文章的前置知识:数学分析 二进制 命题:二进制转化为十进制 二进制的数字表示为 ⋯ b 2 b 1 b 0 . b − 1 b − 2 ⋯ \cdots b_2b_1b_0.b_{-1}b_{-2}\cdots ⋯b2​b1​b0​.b−1​b−2​⋯这等价于十进制下的 ⋯ b 2 2 …...

新数字时代的启示:揭开Web3的秘密之路

在当今数字时代,随着区块链技术的不断发展,Web3作为下一代互联网的概念正逐渐引起人们的关注和探索。本文将深入探讨新数字时代的启示,揭开Web3的神秘之路,并探讨其在未来的发展前景。 1. Web3的定义与特点 Web3是对互联网未来发…...

算法——动态规划:01背包

原始01背包见下面这篇文章:http://t.csdnimg.cn/a1kCL 01背包的变种:. - 力扣(LeetCode) 给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 简化一…...

写作类AI推荐(二)

本章要介绍的写作AI如下: 火山写作 主要功能: AI智能创作:告诉 AI 你想写什么,立即生成你理想中的文章AI智能改写:选中段落句子,可提升表达、修改语气、扩写、总结、缩写等文章内容优化:根据全文…...

分寝室(20分)(JAVA)

目录 题目描述 输入格式: 输出格式: 输入样例 1: 输出样例 1: 输入样例 2: 输出样例 2: 题解: 题目描述 学校新建了宿舍楼,共有 n 间寝室。等待分配的学生中,有女…...

Spring 源码调试问题 ( List.of(“bin“, “build“, “out“); )

Spring 源码调试问题 文章目录 Spring 源码调试问题一、问题描述二、解决方案 一、问题描述 错误&#xff1a;springframework\buildSrc\src\main\java\org\springframework\build\CheckstyleConventions.java:68: 错误: 找不到符号 List<String> buildFolders List.of…...

Centos7安装RTL8111网卡驱动

方法一&#xff1a; // 安装pciutils # yum install -y pciutils // 查看pci设备信息 # lspci | grep -i Ethernet 09:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 03) // 上面看到是Re…...

吉时利KEITHLEY2460数字源表

181/2461/8938产品概述&#xff1a; Keithley 2460 高电流源表源测量单元 (SMU) 将先进的触摸、测试和发明技术带到您的指尖。Keithley 2460 将创新的图形用户界面 (GUI) 与电容式触摸屏技术相结合&#xff0c;使测试变得直观并最大限度地缩短学习曲线&#xff0c;从而帮助工程…...

数据库原理(含思维导图)

数据库原理笔记&#xff0c;html与md笔记已上传 1.绪论 发展历程 记住数据怎么保存&#xff0c;谁保存数据&#xff0c;共享性如何&#xff0c;独立性如何 人工管理阶段 数据不保存应用程序管理数据数据不共享数据不具有独立性 文件系统阶段 数据可以长期保存文件系统管…...

数据结构(六)——图

六、图 6.1 图的基本概念 图的定义 图&#xff1a;图G由顶点集V和边集E组成&#xff0c;记为G (V, E)&#xff0c;其中V(G)表示图G中顶点的有限非空集&#xff1b;E(G) 表示图G中顶点之间的关系&#xff08;边&#xff09;集合。若V {v1, v2, … , vn}&#xff0c;则用|V|…...

Android-AR眼镜屏幕显示

Android-AR眼镜 前提&#xff1a;Android手持设备 需要具备DP高清口 1、创建Presentation&#xff08;双屏异显&#xff09; public class MyPresentation extends Presentation {private PreviewSingleBinding binding;private ScanActivity activity;public MyPresentatio…...

蓝桥集训之货币系统

蓝桥集训之货币系统 核心思想&#xff1a;背包 #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N 30,M 10010;typedef long long LL;LL f[M];int w[N];int n,m;int main(){cin>>n>>m;for(int i1;i&…...

基于微信小程序的校园服务平台设计与实现(程序+论文)

本文以校园服务平台为研究对象&#xff0c;首先分析了当前校园服务平台的研究现状&#xff0c;阐述了本系统设计的意义和背景&#xff0c;运用微信小程序开发工具和云开发技术&#xff0c;研究和设计了一个校园服务平台&#xff0c;以满足学生在校园生活中的多样化需求。通过引…...

QT+Opencv+yolov5实现监测

功能说明&#xff1a;使用QTOpencvyolov5实现监测 仓库链接&#xff1a;https://gitee.com/wangyoujie11/qt_yolov5.git git本仓库到本地 一、环境配置 1.opencv配置 将OpenCV-MinGW-Build-OpenCV-4.5.2-x64文件夹放在自己的一个目录下&#xff0c;如我的路径&#xff1a; …...

【Python-Docx库】Word与Python的完美结合

【Python-Docx库】Word与Python的完美结合 今天给大家分享Python处理Word的第三方库&#xff1a;Python-Docx。 什么是Python-Docx&#xff1f; Python-Docx是用于创建和更新Microsoft Word&#xff08;.docx&#xff09;文件的Python库。 日常需要经常处理Word文档&#xf…...

吴恩达深度学习笔记:浅层神经网络(Shallow neural networks)3.6-3.8

目录 第一门课&#xff1a;神经网络和深度学习 (Neural Networks and Deep Learning)第三周&#xff1a;浅层神经网络(Shallow neural networks)3.6 激活函数&#xff08;Activation functions&#xff09;3.7 为什么需要非线性激活函数&#xff1f;&#xff08;why need a non…...

盘点最适合做剧场版的国漫,最后一部有望成为巅峰

最近《完美世界》动画官宣首部剧场版&#xff0c;主要讲述石昊和火灵儿的故事。这个消息一出&#xff0c;引发了很多漫迷的讨论&#xff0c;其实现在已经有好几部国漫做过剧场版&#xff0c;还有是观众一致希望未来会出剧场版的。那么究竟是哪些国漫呢&#xff0c;下面就一起来…...

Altium Designer许可需求分析

在电子设计的世界中&#xff0c;Altium Designer已成为设计师们的得力助手。然而&#xff0c;如何进行有效的许可需求分析&#xff0c;以确保软件的高效使用和企业的可持续发展&#xff1f;本文将带您了解如何进行Altium Designer的许可需求分析&#xff0c;让您在设计的道路上…...

[c++]类和对象常见题目详解

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…...

【c++】类和对象(五)赋值运算符重载

&#x1f525;个人主页&#xff1a;Quitecoder &#x1f525;专栏&#xff1a;c笔记仓 朋友们大家好&#xff0c;本篇文章带大家认识赋值运算符重载&#xff0c;const成员&#xff0c;取地址及const取地址操作符重载等内容 目录 1.赋值运算符重载1.1运算符重载1.1.1特性&#…...

密码学基础-对称密码/公钥密码/混合密码系统 详解

密码学基础-对称密码/公钥密码 加解密说明1.加密解密必要因素加密安全性说明 什么是对称密码图示说明对称密码详解什么是DES?举例说明 什么是3DES什么是AES? 公钥密码什么是RSA? 对称密钥和公钥密码优缺点对比对称密码对称密码算法总结对称密码存在的问题? 公钥密码公钥密码…...

《装饰器模式(极简c++)》

本文章属于专栏- 概述 - 《设计模式&#xff08;极简c版&#xff09;》-CSDN博客 模式说明&#xff1a; 方案&#xff1a; 装饰类和派生类同根&#xff0c;然后装饰类中放一个派生类&#xff0c;以在接口不动的情况下增加功能优点&#xff1a; 可以灵活地扩展对象功能&#xf…...

Spring Boot 整合分布式搜索引擎 Elastic Search 实现 自动补全功能

文章目录 ⛄引言一、分词器⛅拼音分词器⚡自定义分词器 二、自动补全查询三、自动补全⌚业务需求⏰实现酒店搜索自动补全 四、效果图⛵小结 ⛄引言 本文参考黑马 分布式Elastic search Elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;…...

实现一个Google身份验证代替短信验证

最近才知道公司还在做国外的业务&#xff0c;要实现一个登陆辅助验证系统。咱们国内是用手机短信做验证&#xff0c;当然 这个google身份验证只是一个辅助验证登陆方式。看一下演示 看到了嘛。 手机下载一个谷歌身份验证器就可以 。 谷歌身份验证器&#xff0c;我本身是一个基…...

Spring框架与Spring Boot的区别和联系

引言 Spring框架和Spring Boot都是Java生态中最受欢迎的开源框架&#xff0c;它们各自扮演着不同的角色&#xff0c;帮助开发者构建高效的企业级应用。本教程将从零基础的角度出发&#xff0c;让你轻松理解这两者的区别和联系。 Spring框架简介 Spring框架&#xff0c;简称Spri…...

[OpenCV学习笔记]Qt+OpenCV实现图像灰度反转、对数变换和伽马变换

目录 1、介绍1.1 灰度反转1.2 图像对数变换1.3 图像伽马变换 2、效果图3、代码实现4、源码展示 1、介绍 1.1 灰度反转 灰度反转是一种线性变换&#xff0c;是将某个范围的灰度值映射到另一个范围内&#xff0c;一般是通过灰度的对调&#xff0c;突出想要查看的灰度区间。 S …...

【大数据】Flink学习笔记

文章目录 认识FlinkDocker安装Flink基本概念Flink的特点Flink 和 Spark Streaming 对比 基本使用WordCount实现依赖 批模式代码流模式代码网络流模式代码在web UI上提交代码创建项目[^1]编写代码配置打包在Web UI上提交 Flink 架构系统架构核心概念并行度算子链(Opeartor Chain…...

社交网络的未来:Facebook如何塑造数字社交的下一章

引言 社交网络已成为我们生活中不可或缺的一部分&#xff0c;而Facebook作为其领军者&#xff0c;一直在塑造着数字社交的未来。本文将深入探讨Facebook在未来如何塑造数字社交的下一章&#xff0c;并对社交网络的发展趋势进行展望和分析。 1. 引领虚拟社交的潮流 Facebook将…...

RabbitMQ 延时消息实现

1. 实现方式 1. 设置队列过期时间&#xff1a;延迟队列消息过期 死信队列&#xff0c;所有消息过期时间一致 2. 设置消息的过期时间&#xff1a;此种方式下有缺陷&#xff0c;MQ只会判断队列第一条消息是否过期&#xff0c;会导致消息的阻塞需要额外安装 rabbitmq_delayed_me…...

【Django】枚举类型数据

模型 在模型里主要增加两项内容&#xff1a; 枚举表字段增加choices class Snort(CoreModel):PAGE_TYPE_CHOICES [(1, 失陷主机检测), # 1是保存到数据库里的数据&#xff0c;失陷主机检测是显示在前端的(2, 远程漏洞攻击检测),(3, 可疑流量行为),(4, WEB检测),]page_type…...

jsp做新闻网站/深圳经济最新新闻

Strace是Linux中一个调试和跟踪工具。它可以接管被跟踪进程执行的系统调用和收到的信号。然后把每一个执行的系统调用的名字&#xff0c;参数和返回值打印出来。可以通过strace找到问题出现在user层还是kernel层。 strace 显示这些调用的参数并返回符号形式的值。strace 从内核…...

怎么做彩票网站的代理/新闻媒体发布平台

要开始我是非常新的自举&#xff0c;但我想要做一些类似于这个例子&#xff1a;text over background image但在一个引导框架内。我曾尝试在导航栏下面的容器内创建一个div&#xff0c;但似乎在背后的文字背后放置了白色背景......您可以在此处看到我的代码&#xff1a;JSFiddl…...

南宁网站制作超薄网络/百度收录的网站多久更新一次

出品 | CSDN 云计算 中小企业作为我国数字经济体中数量众多且占比巨大的部分&#xff0c;其数字化转型过程一直面临着不少难点&#xff0c;而随着数据要素的重要性逐渐凸显&#xff0c;中小企业对于数据要素的收集、存储、使用、管理等方面面临着更大挑战。 2023年3月29日&…...

南宁网站建设智能优化/域名免费注册0元注册

一.需求 前端需要它想要的数据格式&#xff1a; 原有的数据格式&#xff1a; 二.定制化&#xff1a; 1.可以嵌套序列化pol_type,lit_des&#xff0c;area_detail&#xff0c;但结构如下&#xff1a; class ChrDetailSerializer(serializers.ModelSerializer):"""…...

手机app软件开发/seo外链资源

python3正则要加括号&#xff01;&#xff01;&#xff01; 转载于&#xff1a;https://www.cnblogs.com/chuxiuhong/p/5885073.html 本文主要为没有使用正则表达式经验的新手入门所写。 转载请写明出处 引子 首先说 正则表达式是什么&#xff1f; 正则表达式&#xff0c;又…...

可以做盗版漫画网站吗/网站制作建设

使用 ThreadPoolExecutor表示一个线程池。Executors类则扮演着线程池工厂的角色&#xff0c;通过Executors可以获取特定功能的线程池Executors工厂创建线程池普通线程池public static ExecutorService newFixedThreadPool(int nThreads)public static ExecutorService newFixe…...