当前位置: 首页 > news >正文

深度学习入门简单实现一个神经网络

实现一个三层神经网络

  • 引言
    • 测试数据
  • 代码

引言

今天我们实现一个简单的神经网络
俩个输入神经元 隐藏层两个神经元 一个输出神经元
激活函数我们使用sigmoid
优化方法使用梯度下降

在这里插入图片描述

我们前期准备是需要把这些神经元的关系理清楚
x1:第一个输入
x2:第二个输入
w11_1:第一层的第一个神经元在第一个输入上的权重
w12_1:第一层的第二个神经元在第一个输入上的权重
b1_1:第一层第一个神经元的偏置项(截距)
z1_1:第一层第一个神经元的线性函数
a1_1:第一层第一个神经元的激活函数
w21_1:第一层的第一个神经元在第一个输入上的权重
w22_1:第一层的第一个神经元在第一个输入上的权重
b2_1:第一层第二个神经元的偏置项(截距)
z1_1:第一层第二个神经元的线性函数
a1_1:第一层第二个神经元的激活函数
w11_2:第二层的第一个神经元在第一个输入上的权重
w21_2:第二层的第二个神经元在第一个输入上的权重
b1_2:第二层第一个神经元的偏置项(截距)
z1_1:第二层第一个神经元的线性函数
a1_1:第二层第一个神经元的激活函数
e:损失函数

测试数据

dataset 可以使用西瓜书89页的西瓜数据集3.0α

代码

import numpy as np
import sympy
import dataset
from matplotlib import pyplot as pltdef sigmod(b):return 1 / (1 + np.exp(-b))xs, ys = dataset.get_beans(100)  # 获取数据
plt.title("Size-Toxicity Funciton", fontsize=12)  # 设置图片的标题
plt.xlabel("Bean Size")  # 设置行标签
plt.ylabel("Toxicity")  # 设置列标签plt.scatter(xs, ys)  # 画散点图"""
命名规则
下划线后面的数字表示被输入的神经元所在的层数
字母后面的数字表示第一个数字表示第几个输入
第二个数字表示被输入的神经元在他所在层数的位置
"""
# 第一层
# 第一个神经元
w11_1 = np.random.rand()
b1_1 = np.random.rand()
# 第二个神经元
w12_1 = np.random.rand()
b2_1 = np.random.rand()
# 第二层
w11_2 = np.random.rand()
w21_2 = np.random.rand()
b1_2 = np.random.rand()# 前向传播 代价函数 y0 = 1/(1+e^(-(wx+b)))
def forward_propgation(xs):z1_1 = w11_1 * xs + b1_1a1_1 = sigmod(z1_1) # 第一层第一个神经元的代价函数值z2_1 = w12_1 * xs + b2_1a2_1 = sigmod(z2_1)  # 第一层第二个神经元的代价函数值z1_2 = w11_2 * a1_1 + w21_2 * a2_1 + b1_2a1_2 = sigmod(z1_2)   # 第二层第一个神经元的代价函数值return a1_2, z1_2, a2_1, z2_1, a1_1, z1_1a1_2, z1_2, a2_1, z2_1, a1_1, z1_1 = forward_propgation(xs)
# plt.plot(xs, a1_2)
# plt.show()# 随机梯度下降
for j in range(5000):for i in range(100):x = xs[i]y = ys[i]# 先来一次前向传播a1_2, z1_2, a2_1, z2_1, a1_1, z1_1 = forward_propgation(x)# 开始反向传播# 误差代价函数e"""z1_1 = w11_1 * xs + b1_1a1_1 = sigmod(z1_1) # 第一层第一个神经元的代价函数值z2_1 = w12_1 * xs + b2_1a2_1 = sigmod(z2_1)  # 第一层第二个神经元的代价函数值z1_2 = w11_2 * a1_1 + w21_2 * a2_1a1_2 = sigmod(z1_2)   # 第二层第一个神经元的代价函数值"""e = (y - a1_2) ** 2  # 误差e = (y - 最后一个神经元得出的值)^2deda1_2 = -2*(y - a1_2)  # 对a1_2 第二层的第一个神经元的函数求导da1_2dz1_2 = a1_2 * (1 - a1_2)  # da1_2对dz1_2求导数dz1_2dw11_2 = a1_1  # dz1_2对w11_2求导数dz1_2dw21_2 = a2_1  # dz1_2对dw21_2求导dedw11_2 = deda1_2 * da1_2dz1_2 * dz1_2dw11_2  # de对dw11_2求偏导dedw21_2 = deda1_2 * da1_2dz1_2 * dz1_2dw21_2  # de对dw21_2求偏导dz1_2db1_2 = 1  # z1_2对db1_2求偏导dedb1_2 = deda1_2 * da1_2dz1_2 * dz1_2db1_2  # de对db1_2求偏导dz1_2da1_1 = w11_2  # dz1_2对da1_1求偏导da1_1dz1_1 = a1_1 * (1 - a1_1)  # da1_1对dz1_1 求偏导dz1_1dw11_1 = x  # dz1_1对dw11_1求偏导dedw11_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da1_1dz1_1 * dz1_1dw11_1  # e对w11_1求导dz1_1db1_1 = 1  # z1_1对b1_1求导dedb1_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da1_1dz1_1 * dz1_1db1_1  # e对b1_1求导dz1_2da2_1 = w21_2  # z1_2 对a2_1 求导da2_1dz2_1 = a2_1 * (1 - a2_1)  # a2_1 对z2_1求导dz2_1dw12_1 = x  # z2_1对w12_1dedw12_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da2_1dz2_1 * dz2_1dw12_1  # e对w12_1求导dz2_1db2_1 = 1  # z2_1 对 b2_1求导dedb2_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da2_1dz2_1 * dz2_1db2_1  # e 对 b2_1求导alpha = 0.03w11_2 = w11_2 - alpha * dedw11_2  # 调整w11_2w21_2 = w21_2 - alpha * dedw21_2  # 调整21_2b1_2 = b1_2 - alpha * dedb1_2  # 调整b1_2w12_1 = w12_1 - alpha * dedw12_1  # 调整w12_1b2_1 = b2_1 - alpha * dedb2_1  # 调整 b2_1w11_1 = w11_1 - alpha * dedw11_1  # 调整 w11_1b1_1 = b1_1 - alpha * dedb1_1  # 调整b1_1if j % 100 == 0:plt.clf()  # 清空窗口plt.scatter(xs, ys)a1_2, z1_2, a2_1, z2_1, a1_1, z1_1 = forward_propgation(xs)plt.plot(xs, a1_2)plt.pause(0.01)  # 暂停0.01秒

相关文章:

深度学习入门简单实现一个神经网络

实现一个三层神经网络 引言测试数据 代码 引言 今天我们实现一个简单的神经网络 俩个输入神经元 隐藏层两个神经元 一个输出神经元 激活函数我们使用sigmoid 优化方法使用梯度下降 我们前期准备是需要把这些神经元的关系理清楚 x1:第一个输入 x2:第二个…...

win11 环境配置 之 Jmeter(JDK17版本)

一、安装 JDK 1. 安装 jdk 截至当前最新时间: 2024.3.27 jdk最新的版本 是 官网下载地址: https://www.oracle.com/java/technologies/downloads/ 建议下载 jdk17 另存为到该电脑的 D 盘下,新建jdk文件夹 开始安装到 jdk 文件夹下 2. 配…...

Windows下载使用nc(netcat)命令

‘nc’ 不是内部或外部命令,也不是可运行的程序? 点击链接地址,下载压缩包。 完成后解压 使用方式(三种): 1、直接双击exe使用 2、把这个exe放到cmd启动的默认路径下 放到默认路径下,使用nc&a…...

istio 设置 istio-proxy sidecar 的 resource 的 limit 和 request

方式一 修改 configmap 查看当前 sidecar 的 cpu 和 memory 的配额 在 istio-sidecar-injector 中查找,修改后重启 pod 可以生效(下面那个 proxy_init 配置不管,不知道是干嘛的) 方式二 如果是通过 iop 安装的 istio&#xf…...

flutter弹框

alertDialog:弹框 simpleDialog:选择弹框 showModalBottomSheet:底部弹出弹框 showtoast:三方插件弹框 Navigator.of(context).pop(点击取消) 关闭弹框,传递参数 import package:flutter/material.dart; // import package:flutter/cupertino.dart; import package:flut…...

2013年认证杯SPSSPRO杯数学建模B题(第一阶段)流行音乐发展简史全过程文档及程序

2013年认证杯SPSSPRO杯数学建模 B题 流行音乐发展简史 原题再现: 随着互联网的发展,流行音乐的主要传播媒介从传统的电台和唱片逐渐过渡到网络下载和网络电台等。网络电台需要根据收听者的已知喜好,自动推荐并播放其它音乐。由于每个人喜好…...

代码随想录算法训练营第39天 | 62.不同路径, 63不同路径II

Leetcode - 62:不同路径 题目: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” &#…...

Redis 的慢日志

Redis 的慢日志 Redis 的慢日志(Slow Log)是用于记录执行时间超过预设阈值的命令请求的系统。慢日志可以帮助运维人员和开发人员识别潜在的性能瓶颈,定位那些可能导致 Redis 性能下降或响应延迟的慢查询。以下是 Redis 慢日志的相关细节&…...

第十四届蓝桥杯第十题:蜗牛分享

问题描述 输入格式 输出格式 输出共一行,一个浮点数表示答案(四舍五入保留两位小数)。 样例输入 3 1 10 11 1 1 2 1样例输出 4.20样例说明 蜗牛路线:(0,0)→(1,0)→(1,1)→(10,1)→(10,0)→(11,0)(0,0)→(1,0)→(1,1)→(10,1…...

不懂技术的老板,如何避免过度依赖核心技术人员

在这个日新月异、技术驱动的时代,即使作为非技术背景的老板,也深知核心技术人员的价值。然而,过度依赖某几位核心技术人员,不仅可能带来经营风险,还可能限制企业的创新与发展。那么,不懂技术的老板&#xf…...

Vue系列-el挂载

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>el:挂载点</title> </head> <body&g…...

python--os和os.path模块

>>> import os >>> #curdir #获取当前脚本的绝对路径 >>> os.curdir . >>> import os.path >>> #获取绝对路径 >>> os.path.abspath(os.curdir) C:\\Users\\GUOGUO>>> #chdir #修改当前目录 >&g…...

前端通用命名规范和Vue项目命名规范

​​​​​​通用命名规范 变量和常量命名&#xff1a;变量和常量的命名应具有描述性&#xff0c;清晰明了&#xff0c;使用驼峰命名法或下划线命名法&#xff0c;例如&#xff1a;firstName、MAX_VALUE。 函数和方法命名&#xff1a;函数和方法的命名应该能够准确描述其功能&…...

NTP服务搭建

一、ntpd和ntpdate区别 1.ntpd是自动执行的远程更新本地系统时钟的服务&#xff0c;是平滑同步&#xff1b; 2.ntpdate是手工执行的服务&#xff0c;也就是一般用它执行一次本地时间更新&#xff0c;如果做成半自动&#xff0c;可以写入到crontab自动任务&#xff0c;从而变成…...

Linux离线安装mysql,node,forever

PS:本文是基于centos7实现的,要求系统能够查看ifconfig和unzip解压命令, 实现无网络可安装运行 首先现在百度网盘的离线文件包****安装Xftp 和 Xshell 把机房压缩包传到 home目录下****解压unzip 包名.zip 获取IP先获取到 linux 主机的ip ifconfig Xftp 连接输入IP,然后按照…...

WPF中获取TreeView以及ListView获取其本身滚动条进行滚动

实现自行调节scoll滚动的位置(可相应获取任何控件中的内部滚动条) TreeView:TreeViewAutomationPeer lvap new TreeViewAutomationPeer(treeView); var svap lvap.GetPattern(PatternInterface.Scroll) as ScrollViewerAutomationPeer; var scroll svap.Owner as ScrollVie…...

C语言: 指针讲解

为什么需要指针? &#xff08;1&#xff09;指针的使用使得不同区域的代码可以轻易的共享内存数据。当然你也可以通过数据的复制达到相同的效果&#xff0c;但是这样往往效率不太好&#xff0c;因为诸如结构体等大型数据&#xff0c;占用的字节数多&#xff0c;复制很消耗性能…...

C#使用Stopwatch类来实现计时功能

前言 在 C# 中&#xff0c;Stopwatch 类是用于测量经过的时间的工具类&#xff0c;提供了高精度的计时功能。Stopwatch 类位于 System.Diagnostics 命名空间中。通常情况下&#xff0c;使用 Stopwatch 的流程是创建一个 Stopwatch 对象&#xff0c;然后调用 Start 方法开始计时…...

ubuntu18.04安装qt

ubuntu18.04安装qt 1、下载文件 比如我下载的是5.13.0版本 下载链接 2、安装 wget https://download.qt.io/archive/qt/5.13/5.13.0/qt-opensource-linux-x64-5.13.0.runsudo chmod x qt-opensource-linux-x64-5.13.0.runsudo ./qt-opensource-linux-x64-5.13.0.run参考文…...

ElasticSearch、java的四大内置函数式接口、Stream流、parallelStream背后的技术、Optional类

第四周笔记 一、ElasticSearch 1.安装 apt-get install lrzsz adduser -m es 创建用户组&#xff1a; useradd *-m* xiaoming(用户名) *PS&#xff1a;追加参数-m* passwd xiaoming(用户名) passwd xiaoming 输入新的 UNIX 密码&#xff1a; 重新输入新的 UNIX 密码&…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...

python读取SQLite表个并生成pdf文件

代码用于创建含50列的SQLite数据库并插入500行随机浮点数据&#xff0c;随后读取数据&#xff0c;通过ReportLab生成横向PDF表格&#xff0c;包含格式化&#xff08;两位小数&#xff09;及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...

LeetCode 0386.字典序排数:细心总结条件

【LetMeFly】386.字典序排数&#xff1a;细心总结条件 力扣题目链接&#xff1a;https://leetcode.cn/problems/lexicographical-numbers/ 给你一个整数 n &#xff0c;按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。…...