当前位置: 首页 > news >正文

GEE23:基于植被物候实现农作物分类

地物分类

  • 1. 写在前面
  • 2. 北京作物分类

1. 写在前面

  今天分享一个有意思的文章,用于进行农作物分类。文章提出了一个灵活的物候辅助监督水稻(PSPR)制图框架。主要是通过提取植被物候,并自动对物候数据进行采样,获得足够多的样本点,再使用随机森林等机器学习方法进行分类。这种方法有效解决了样本量不足或者样本位置不够精确的问题,并且分类结构相较于之前的方法更高。我认为这是一种比较有意思的文章,当然这种方法还可以用到其他植被类型分类中。

灵活的物候辅助监督水稻(PSPR)制图框架:
在这里插入图片描述

2. 北京作物分类

   首先,使用Landsat5、7、8数据获取植被物候信息,再提取随机采样点。
  各植被类型的物候:
在这里插入图片描述

/**************************使用PSPR方法生成随机采样点*************************/
// PSPR: 灵活的物候辅助监督水稻制图框架
//设置研究区位置: 北京
var table = ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019");
var BJGrid4 = table.filter(ee.Filter.eq('provinces','beijing'));
var roi = BJGrid4;
Map.addLayer(roi,{'color':'grey'},'roi',false);
Map.centerObject(roi,7);var GridTest = GridRegion(BJGrid4.geometry(),6,6).filterBounds(roi);
print("GridTest size:",GridTest.size());
var color = {'color':'0000FF','fillColor':'FF000000'};
Map.addLayer(GridTest.style(color),null,'GridTest');/********* cropland mask**************************************************/
//这个数据为中科院的30LUCC数据,其中11和12分别表示水田和旱地
var CAS_LULC_2018 = ee.Image("users/chengkangmk/Global-LULC-China/LULC_CAS/CAS_LULC_30m_2018");
var cropland = CAS_LULC_2018.eq(11).or(CAS_LULC_2018.eq(12)).clip(roi);
Map.addLayer(cropland.randomVisualizer(),null,'cropland',false);/*******************************自定义函数*********************************/
// Landsat 4, 5 and 7 去云
function rmL457Cloud(image) {var qa = image.select('pixel_qa');// If the cloud bit (5) is set and the cloud confidence (7) is high// or the cloud shadow bit is set (3), then it's a bad pixel.var cloud = qa.bitwiseAnd(1 << 5).and(qa.bitwiseAnd(1 << 7)).or(qa.bitwiseAnd(1 << 3));// Remove edge pixels that don't occur in all bandsvar mask2 = image.mask().reduce(ee.Reducer.min());var mask3 = image.select("B1").gt(2000);return image.updateMask(cloud.not()).updateMask(mask2).updateMask(mask3.not()).toDouble().divide(1e4).copyProperties(image).copyProperties(image, ["system:time_start",'system:time_end']);
}// Landsat-8 去云
function rmL8Cloud(image) { var cloudShadowBitMask = (1 << 3); var cloudsBitMask = (1 << 5); var qa = image.select('pixel_qa'); var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); var mask2 = image.select("B2").gt(2000);                 return image.updateMask(mask).updateMask(mask2.not()).toDouble().divide(1e4).copyProperties(image).copyProperties(image, ["system:time_start",'system:time_end']);
}// Sentinel-2 去云
function rmS2cloud(image) {var qa = image.select('QA60');// Bits 10 and 11 are clouds and cirrus, respectively.var cloudBitMask = 1 << 10;var cirrusBitMask = 1 << 11;// Both flags should be set to zero, indicating clear conditions.var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(qa.bitwiseAnd(cirrusBitMask).eq(0));var mask2 = image.select("B2").lte(2000);return image.updateMask(mask).updateMask(mask2).toDouble().divide(1e4).copyProperties(image).copyProperties(image, ["system:time_start", "system:time_end"]);
}// 计算相关指数,包括NDVI、LSWI(植被水分含量指数)、EVI
function addIndex(image){// original bandsvar blue = image.select('blue'); var red = image.select('red');var green  = image.select('green');var nir = image.select('nir');var swir1 = image.select('swir1');var ndvi = image.normalizedDifference(["nir", "red"]).rename("NDVI").toDouble();var lswi = image.normalizedDifference(["nir", "swir1"]).rename("LSWI").toDouble();var lswi2ndvi = lswi.subtract(ndvi).rename("LSWI2NDVI").toDouble();var evi = image.expression('2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', {'NIR': nir,'RED': red,'BLUE':blue}).rename("EVI");return image.addBands(ndvi).addBands(lswi).addBands(lswi2ndvi).addBands(evi);
}// 为影像的特定波段指定名称
var LC8_BANDS = ['B2',   'B3',    'B4',  'B5',  'B6',    'B7']; //Landsat 8
var LC7_BANDS = ['B1',   'B2',    'B3',  'B4',  'B5',    'B7']; //Landsat 7
var LC5_BANDS = ['B1',   'B2',    'B3',  'B4',  'B5',    'B7']; //Llandsat 5
var S2_BANDS  = ['B2',   'B3',    'B4',  'B8',  'B11',   'B12']; // Sentinel-2
var STD_NAMES = ['blue', 'green', 'red', 'nir', 'swir1', 'swir2'];// 定义时间变量、LSWI阈值、采样点数量
var year = '2015';
var th_lswi2NDVI = 0;
var pointNum = 1000;// 导入数据
// landsat 8
var l8Col = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').map(rmL8Cloud).filterBounds(roi).filterDate(year+'-04-01',year+'-11-01')// .filter(ee.Filter.lte('CLOUD_COVER',10)).select(LC8_BANDS, STD_NAMES); 
// landsat 7 
var l7Col = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR').map(rmL457Cloud).filterBounds(roi).filterDate(year+'-04-01',year+'-11-01').select(LC7_BANDS, STD_NAMES); 
// landsat 5  
var l5Col = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR').map(rmL457Cloud).filterBounds(roi).filterDate(year+'-04-01',year+'-11-01').select(LC5_BANDS, STD_NAMES); var L578COl = ee.ImageCollection(l8Col.merge(l7Col).merge(l5Col)).sort("system:time_start").map(addIndex);
print("L578COl: ", L578COl);//****************************************************************************
//***************************** 基于LSWI的水稻制图****************************
//****************************************************************************
var palette1 = {min: 0, max: 1.0, palette: ['000000', '00FF00']};// 1.水淹阶段,定义植被的时间窗口
var imgCol_flood = L578COl.filterDate(year+'-05-01',year+'-06-30') .filterBounds(roi);// 使用 LSWI-NDVI 提取水稻
// "rice_0_lswi": 表示初步产生水稻的时间
var rice_0_lswi =  imgCol_flood.select("LSWI2NDVI").map(function(image){return image.select("LSWI2NDVI").gt(th_lswi2NDVI);  
});// 从rice_0_lswi图像集合中获取每个像素位置上的LSWI指数最大值(找到最大的 LSWI 值)。
// LSWI是一种用于检测土地表面水体的指数,其数值通常与水体的存在程度成正比。在稻田中,LSWI 的最大值对应于稻田灌溉时水体充足的情况。因此这样可以最大程度的保证水稻位置的获取。
var rice_0_lswi = rice_0_lswi.reduce(ee.Reducer.max()).clip(roi).updateMask(cropland);
Map.addLayer(rice_0_lswi, palette1, "rice_0_lswi candidates",false);//2.生长阶段,水稻幼苗被移植到稻田中,直到水稻成熟
var imgCol_growth =  L578COl.filterDate(year+'-07-01',year+'-10-31').filterBounds(roi);// 不同阶段图像
var PalettePanel = {bands:["swir1","nir","red"],min:0,max:0.3};var imgCol_flood_qmosaic = imgCol_flood.qualityMosaic('LSWI2NDVI').clip(roi);
Map.addLayer(imgCol_flood_qmosaic, PalettePanel, 'imgCol_flood_qmosaic');var imgCol_growth_qmosaic = imgCol_growth.qualityMosaic('NDVI').clip(roi);
Map.addLayer(imgCol_growth_qmosaic, PalettePanel, 'imgCol_growth_qmosaic', false);// 使用 0 值来填充rice_0_lswi的区域
var rice_0_map = rice_0_lswi.unmask(0).clip(roi);
Map.addLayer(rice_0_map.selfMask(), {"palette":'#FF0000'}, "rice_0_map",false);//****************************************************************************
//*********************基于CCVS 方法提取水稻物候******************************
//****************************************************************************
var visParam = {min: -0.2,max: 0.8,palette: 'FFFFFF, CE7E45, DF923D, F1B555, FCD163, 99B718, 74A901, 66A000, 529400,' +'3E8601, 207401, 056201, 004C00, 023B01, 012E01, 011D01, 011301'
};// 使用LSWI_max, LSWI_min, NDVI_max, NDVI_min来推导RCLN,其中RCLN表示LSWI相对于与NDVI的变化幅度
var RCLE = imgCol_growth_qmosaic.select("LSWI").subtract(imgCol_flood_qmosaic.select('LSWI')).abs().divide(imgCol_growth_qmosaic.select("EVI").subtract(imgCol_flood_qmosaic.select('EVI')).abs()).rename("RCLE");
Map.addLayer(RCLE, visParam,'RCLE', false);// 创建一个布尔类型的图像,其中大于 0.1 的像素被设置为 true,小于或等于 0.1 的像素被设置为 false
var LSIW_min = imgCol_flood.select('LSWI').min().gt(0.1).clip(roi).updateMask(cropland);
Map.addLayer(LSIW_min.selfMask(), {"palette":'#FF0000'}, "LSIW_min",false);// 
var RCLE_rice = RCLE.updateMask(RCLE.gt(0)).updateMask(LSIW_min).lt(0.6).unmask(0).clip(roi); 
Map.addLayer(RCLE_rice.selfMask(), {palette: 'green'}, "CCVS_rice",false);var riceCombine = RCLE_rice.add(rice_0_map);// 将以上两种方法得到的数据图像进行合并求交
var stableMask = riceCombine.eq(0).or(riceCombine.eq(2));
var LULU_mutual = riceCombine.updateMask(stableMask).where(riceCombine.eq(2),1).rename("RiceMap").updateMask(cropland);
Map.addLayer(LULU_mutual,palette1,'LULU_mutual',false);var riceMapCol = GridTest.toList(GridTest.size()).map(function(ROIFea){// set study areavar roi = ee.FeatureCollection([ROIFea]);var ricemap = riceTrainData(roi);return ee.FeatureCollection(ricemap);
});
var samplePoint = ee.FeatureCollection(riceMapCol).flatten();
Map.addLayer(samplePoint,null,'samplePoint',false);// check the generated sample data
print("samplePoint:",samplePoint.limit(10));var ricePoint_1 = samplePoint.filter(ee.Filter.eq('landcover',1));
Map.addLayer(ricePoint_1,{'color':'#FFA500'},'ricePoint_1');
print("ricePoint_1 size",ricePoint_1.size());var NonricePoint_1 = samplePoint.filter(ee.Filter.eq('landcover',0));
print("NonricePoint_1 size",NonricePoint_1.size());Export.table.toAsset(samplePoint,"PSPRSampleGeneration"+year,"PSPRSampleGeneration"+year)function riceTrainData(roiRegion){var roi = roiRegion;var LULU_mutual2 = LULU_mutual.clip(roi);/***********************************************************************Define neighboor function* and generate the samples***********************************************************************/function neighFun(img,kernalRadius,roi){var kernel = ee.Kernel.square(kernalRadius,'pixels',false);var kernelArea = (ee.Number(kernalRadius).multiply(2).add(1)).pow(2);var imgNeibor = ee.Image(img).convolve(kernel).eq(kernelArea).set("system:footprint",roi.geometry());return img.updateMask(imgNeibor);}var samplePoint = ee.List([]);for(var i=0;i<=1;i++){var class_Num = i;var class_i_mask = neighFun(LULU_mutual2.eq(class_Num),1,roi);var class_i = LULU_mutual2.updateMask(class_i_mask);samplePoint = samplePoint.add(class_i);}var samplePoint = ee.ImageCollection(samplePoint).mosaic().rename("landcover").updateMask(cropland);var pointSample =  samplePoint.stratifiedSample({numPoints:pointNum,classBand:"landcover",region:roi.geometry(),scale:30,seed:0,// tileScale:8,geometries:true});return pointSample;
}/**************************************************************************
generate the grid
***************************************************************************/
function generateGrid(xmin, ymin, xmax, ymax, dx, dy) {var xx = ee.List.sequence(xmin, ee.Number(xmax).subtract(0.0001), dx);var yy = ee.List.sequence(ymin, ee.Number(ymax).subtract(0.0001), dy);var cells = xx.map(function(x) {return yy.map(function(y) {var x1 = ee.Number(x);var x2 = ee.Number(x).add(ee.Number(dx));var y1 = ee.Number(y);var y2 = ee.Number(y).add(ee.Number(dy));var coords = ee.List([x1, y1, x2, y2]);var rect = ee.Algorithms.GeometryConstructors.Rectangle(coords); return ee.Feature(rect);});}).flatten(); return ee.FeatureCollection(cells);
}function GridRegion(roiRegion,xBlock,yBlock){//roiRegion: area of interest in the form of geometry// compute the coordinatesvar bounds = roiRegion.bounds();var coords = ee.List(bounds.coordinates().get(0));var xmin = ee.List(coords.get(0)).get(0);var ymin = ee.List(coords.get(0)).get(1);var xmax = ee.List(coords.get(2)).get(0);var ymax = ee.List(coords.get(2)).get(1);var dx = (ee.Number(xmax).subtract(xmin)).divide(xBlock); //4var dy = (ee.Number(ymax).subtract(ymin)).divide(yBlock);var grid = generateGrid(xmin, ymin, xmax, ymax, dx, dy);  grid = grid.filterBounds(roiRegion); return grid;
}

植被水分含量指数(LSWI) 在其公式中使用了NIR和SWIR通道,SWIR波段对植被含水量的变化较敏感:
在这里插入图片描述
在这里插入图片描述

结果展示:
在这里插入图片描述

相关文章:

GEE23:基于植被物候实现农作物分类

地物分类 1. 写在前面2. 北京作物分类 1. 写在前面 今天分享一个有意思的文章&#xff0c;用于进行农作物分类。文章提出了一个灵活的物候辅助监督水稻(PSPR)制图框架。主要是通过提取植被物候&#xff0c;并自动对物候数据进行采样&#xff0c;获得足够多的样本点&#xff0c;…...

一些常见的Docker问题和答案

什么是Docker&#xff1f;它的主要功能是什么&#xff1f; Docker是一种开源的容器化平台&#xff0c;用于构建、部署和运行应用程序。它的主要功能包括&#xff1a;快速构建、分发和运行应用程序的容器化环境&#xff0c;实现应用程序的可移植性和可扩展性。 Docker和虚拟机…...

Web CSS笔记2

目录 1、背景 ①、背景图片(image) ②、背景平铺&#xff08;repeat&#xff09; ③、背景位置(position) ④、背景附着&#xff08;attachment&#xff09; ⑤、背景透明(CSS3) ⑥、背景图片缩放大小&#xff08;size&#xff09;&#xff1a; ⑦、背景简写 2、标签显…...

SpringBoot -- 整合SpringMVC

SpringBoot已经替我们整合了许多框架并进行了默认的配置&#xff0c;我们只需要在依赖中导入spring-boot-starter-web&#xff0c;就可以直接使用SpringMVC以及web场景下的已经整合好的功能。但SpringBoot的默认配置可能无法满足我们所有的需求&#xff0c;那么我们怎么进行自定…...

C语言操作符详细讲解

前言 本次博客一定会让刚刚学习C语言小白有所收获 本次操作符讲解不仅分类还会有代码示例 好好看 好好学 花上几分钟就可以避免许多坑 1 操作符的基本使用 1.1操作符的分类 按功能分 算术操作符&#xff1a; 、- 、* 、/ 、% 移位操作符: >> << 位操作符…...

Godot 学习笔记(5):国际化多语言翻译,包含常用10种语言机翻!

文章目录 前言国际化翻译Api选择小牛测试 语言选择代码逻辑实体对象翻译帮助类导出模板读取文件翻译测试多语言测试 综合翻译文件准备测试代码测试结果 完整代码实体类翻译帮助类网络帮助类 最终效果翻译前翻译中翻译后 总结 前言 为了面向更大的市场&#xff0c;国际化是肯定…...

服务器大请求体问题定位

背景 整个系统,分位微服务A、微服务B,A在调用B的过程中,报400BadRequest,问题定位到修复后,如何发送一个同样的请求进行验证 解决过程 1、查询A服务的日志,发现在调用B的过程中报错400BadRequest,并且请求体非常大300多KB 2、查看B服务的日志,发现请求没有进来 3、发…...

Vue指令之v-model

调了半天没反应&#xff0c;结果是没引用Vue&#xff0c;我是伞兵。 v-model的作用是将视图与数据双向绑定。一般情况下&#xff0c;Vue是数据驱动的&#xff0c;即数据发生改变后网页就会刷新一次&#xff0c;更改对应的网页内容&#xff0c;即数据单向绑定了网页内容。而使用…...

信息系统项目管理师——第11章项目成本管理(重要)

选择、本章节内容属于10大管理知识领域中的重中之重案例、论文都会考&#xff0c;需要完全掌握。 选择题大概考3分左右&#xff0c;理论和计算都会考。 案例题&#xff0c;必考内容&#xff0c;挣值相关的计算&#xff0c;必须得会。 论文题&#xff0c;考的比较多&#xff0c;…...

SpringMVC常见面试题

1&#xff1a;Spring mvc执行流程 回答&#xff1a; 版本1&#xff1a;视图版本&#xff0c;jsp 用户发送出请求到前端控制器DispatcherServletDispatcherServlet收到请求调用HandlerMapping(处理映射器)HandlerMapping找到具体的处理器&#xff0c;生成处理器对象及处理器拦…...

golang 和java对比

Golang&#xff08;又称Go&#xff09;和Java都是目前非常流行的编程语言&#xff0c;但它们有着不同的设计哲学和用途。在本文中&#xff0c;我们将对Golang和Java进行比较&#xff0c;从以下几个方面进行评估&#xff1a;语言特性、性能、并发性能、生态系统和使用场景。 一…...

基于pear-admin-flask 的 flask 使用教程

我最近接触到了一个极为出色的Flask后台库——pear-admin-flask&#xff0c;这个库具有很高的二次开发价值。借此机会学习并吸收其中Flask开发的一些高级技巧。 1. flask 自定义命令 pear-admin-flask/applications/common/script/admin.py from flask.cli import AppGroup …...

Android 开发投屏软件

一、背景 作为Android开发总会有给他人share自己APP情况&#xff0c;一般在线会议投屏&#xff0c;总是需要在手机上安装对应会议软件特别麻烦~ 二、投屏 Android Studio已经自带了投屏能力&#xff0c;可以在电脑端直接控制手机&#xff0c;同步起来非常方便简单 打开步骤 …...

.Net Web窗口页属性

<%Page %> Page 指令定义 Web 窗体使用的属性&#xff0c;这些属性将被 Web 窗体页分析器和编译器使用。只能包含在 .aspx 文件中。我们每新建一个 Web 页面时&#xff0c;系统会自动为该 Web 页面头部创建一个 Page 指令&#xff0c;来指明页面最基本的属性。 Langu…...

渐变色x轴换行柱状图

// 系统上云率const optionBar {title: {text: 系统上云率,left: left,textStyle: {color: "#fff",fontSize: 14,fontWeight: 650,align: "center",},},color: [#32C5FF, #00F766, #EECB5F],grid: {top: 40,bottom: 0,},legend: { // 控制图例组件show: …...

源支付V7开源版2.99,修复各种提示错误

源支付V7开源版2.99&#xff0c;修复各种提示错误 加密说明&#xff1a;200拿来的&#xff0c;只有8.1这个文件加密&#xff0c;其他文件无任何加密&#xff0c;已修复各种提示错误 测试其他开源版安装提示错误&#xff0c;有几个文件是加密的 注&#xff1a;开发不易&#…...

Mysql中的那些锁

表锁和行锁 表锁&#xff1a;一锁锁整张表&#xff0c;mysql中锁定颗粒度最大的一种&#xff0c;针对非索引字段加的锁。MyISAM和InnoDb都支持。 行锁&#xff1a;一锁只锁整行&#xff0c;锁定颗粒度最小&#xff0c;针对索引字段加的锁。MyISAM不支持&#xff0c;InnoDb支持…...

如何在Linux系统部署ONLYOFFICE协作办公利器并实现多人实时编辑文档

文章目录 1. 安装Docker2. 本地安装部署ONLYOFFICE3. 安装cpolar内网穿透4. 固定OnlyOffice公网地址 本篇文章讲解如何使用Docker在本地服务器上安装ONLYOFFICE&#xff0c;并结合cpolar内网穿透实现公网访问。 Community Edition允许您在本地服务器上安装ONLYOFFICE文档&…...

Linux部署Sonarqube+Gogs+Jenkins(一)

Linux部署SonarqubeGogsJenkins 一、1.Linux安装JDK11环境1. 本地进行上传2. 进入到/usr/java目录&#xff0c;并且进行解压3. 配置文件/etc/profile&#xff0c;配置环境变量4.让对应的配置文件生效5. 验证 二、Linux安装Python环境三、Linux安装Jenkins环境1、/usr目录下创建…...

程序员开发技术整理(持续整理中)

前端技术&#xff1a; vue-前端框架element-前端框架bootstrap-前端框架echarts-图标组件 C#后端技术&#xff1a; webservice&#xff1a;soap架构&#xff1a;简单的通信协议&#xff0c;用于服务通信ORM框架&#xff1a;对象关系映射&#xff0c;如EF&#xff1a;对象实体…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...