当前位置: 首页 > news >正文

深度学习pytorch——经典卷积网络之ResNet(持续更新)

错误率前五的神经网络(图-1):

图-1

可以很直观的看到,随着层数的增加Error也在逐渐降低,因此深度是非常重要的,但是学习更好的网络模型和堆叠层数一样简单吗?通过实现表明(图-2),并不是如此,会出现梯度消失和梯度爆炸的现象,甚至比堆叠之前的训练效果更差,这种现象被称为梯度退化。 

图-2

如何保证梯度不退化,即随着堆叠层数的增加,训练模型不会比堆叠之前还要差?深度残差网络(Deep Residual Learning,ResNet)的提出很好的解决了这一问题,并且不仅没有增加额外的参数,也没有增加计算的复杂度。

ResNet在普通网络的基础上插入了短路(shortcut connection)(图-3),将这个网络变成了ResNet。

图-3

以上的叙述知识思想层面的,将思想转化为实操,离不开背后的数学原理(图-4)。

图-4

我们将最后的输出设置为 H(x)  ,我们将堆叠的非线性层去拟合F(x) = H(x) - x ,原来的映射就变成了F(x) + x (F(x)必须和x的维度相同,如果不相同可是使用1*1卷积或者增加padding)。相当于我们在一些非线性对叠层之间插入了一个短路(shortcut connection),如果堆叠之后的模型的训练Error比之前还要差,就会直接走短路通道,如果堆叠之后的模型比之前好了,就进行堆叠,至于在几个堆叠层之间插入一个短路,这取决于训练的参数。

使用ResNet模型并不需要建立新的求解器,我们可以直接使用公共库,代码演示如下:

class ResBlk(nn.Module):"""resnet block"""def __init__(self, ch_in, ch_out):""":param ch_in::param ch_out:"""super(ResBlk, self).__init__()self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)self.bn1 = nn.BatchNorm2d(ch_out)self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(ch_out)#如果shortcut的输入和输出层的channel不一样,可以用一个1*1的卷积让他们变成一样self.extra = nn.Sequential()if ch_out != ch_in:# [b, ch_in, h, w] => [b, ch_out, h, w]self.extra = nn.Sequential(nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),nn.BatchNorm2d(ch_out))def forward(self, x):""":param x: [b, ch, h, w]:return:"""out = F.relu(self.bn1(self.conv1(x)))  #激活函数,也可以在上面的网络(第25行)写nn.ReLUout = self.bn2(self.conv2(out))# short cut.# extra module: [b, ch_in, h, w] => [b, ch_out, h, w]# element-wise add:out = self.extra(x) + outreturn out

这个代码来自于课时72 ResNet与DenseNet-2_哔哩哔哩_bilibili 

中间关于这个思想的解释来自于我自己对Deep Residual Learning for Image Recognition 论文的理解,如果有什么问题,欢迎各位大佬指正,我将会感激不尽。 

相关文章:

深度学习pytorch——经典卷积网络之ResNet(持续更新)

错误率前五的神经网络(图-1): 图-1 可以很直观的看到,随着层数的增加Error也在逐渐降低,因此深度是非常重要的,但是学习更好的网络模型和堆叠层数一样简单吗?通过实现表明(图-2&…...

react 面试题(2024 最新版)

1. 对 React 的理解、特性 React 是靠数据驱动视图改变的一种框架,它的核心驱动方法就是用其提供的 setState 方法设置 state 中的数据从而驱动存放在内存中的虚拟 DOM 树的更新 更新方法就是通过 React 的 Diff 算法比较旧虚拟 DOM 树和新虚拟 DOM 树之间的 Chan…...

JVM(三)——字节码技术

三、字节码技术 1、类文件结构 一个简单的 HelloWorld.java package com.mysite.jvm.t5; // HelloWorld 示例 public class HelloWorld {public static void main(String[] args) {System.out.println("hello world");} }执行 javac -parameters -d . HellowWorld.…...

HarmonyOS 应用开发之Stage模型绑定FA模型ServiceAbility

本小节介绍Stage模型的两种应用组件如何绑定FA模型ServiceAbility组件。 UIAbility关联访问ServiceAbility UIAbility关联访问ServiceAbility和UIAbility关联访问ServiceExtensionAbility的方式完全相同。 import common from ohos.app.ability.common; import hilog from o…...

高效解决Visual Studio无法识别到自定义头文件

文章目录 问题解决方案 问题 说明你没有好好配置项目属性 解决方案 把头文件都集中存放到一个文件夹里 之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路…...

[数据集][目标检测]道路行人车辆坑洞锥形桶检测数据集VOC+YOLO格式6275张4类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):6275 标注数量(xml文件个数):6275 标注数量(txt文件个数):6275 标注…...

风险与收益

风险与收益 影响资产需求的主要因素财富总量预期收益率资产的流动性影响流动性的主要因素 风险 如何降低风险系统风险和非系统风险机会集合与有效集合资产组合理论 影响资产需求的主要因素 影响资产需求的主要因素包括:财富总量、预期收益率、资产的流动性和风险。…...

linux服务器安装mysql8

1.下载MYSQL 近几天在linux服务器已安装过2次mysql8,亲测有效,没有遇到任何问题,文档已写的很清楚,按步骤来即可。如果按文档有遇到要使用yum命令的话,需要服务器开通外网。 1.1官网下载 进入官网下拉到最后&#x…...

亚信安全荣获2023年度5G创新应用评优活动两项大奖

近日,“关于2023 年度5G 创新应用评优活动评选结果”正式公布,亚信安全凭借在5G安全领域的深厚积累和创新实践,成功荣获“5G技术创新的优秀代表”和“5G应用创新的杰出实践”两项大奖。 面向异构安全能力的5G安全自动化响应系统 作为5G技术创…...

linux之忘记root密码

一,开机到如下地方按下e进入紧急模式 然后再如下位置输入init/bin/bash 然后Ctrlx 二, 修改密码 以上操作分别为 1),重新挂载根目录 mount -o remount,rw / 2),修改密码 passwd root 3)&a…...

jspm智能仓储系统

开发语言:Java 框架:ssm 技术:JSP JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myeclip…...

深入理解数据结构(3):栈和队列详解

文章主题:顺序表和链表详解🌱所属专栏:深入理解数据结构📘作者简介:更新有关深入理解数据结构知识的博主一枚,记录分享自己对数据结构的深入解读。😄个人主页:[₽]的个人主页&#x…...

单例设计模式(3)

单例模式(3) 实现集群环境下的分布式单例类 如何理解单例模式中的唯一性? 单例模式创建的对象是进程唯一的。以springboot应用程序为例,他是一个进程,可能包含多个线程,单例代表在这个进程的某个类是唯一…...

将jupyter notebook文件导出为pdf(简单有效)

1.打开jupyter notebook笔记: 2.点击file->print Preview 3.在新打开的页面右键打印 4.另存为PDF 5.保存即可 6.pdf效果 (可能有少部分图片显示不了) 网上也有其他方法,比如将其转换为.tex再转为PDF等,但个人觉…...

使用INSERT INTO ... ON DUPLICATE KEY UPDATE批量插入更新导入excel数据的实践场景应用

INSERT INTO ... ON DUPLICATE KEY UPDATE 是 MySQL 中的一个非常有用的语法,它允许你在插入新记录时,如果记录的唯一键(如主键或唯一索引)已存在,则执行更新操作而不是插入。这可以帮助你避免在插入数据时产生的重复键…...

AJAX-项目优化(目录、基地址、token、请求拦截器)

目录管理 基地址存储 在utils/request.js配置axios请求基地址 作用&#xff1a;提取公共前缀地址&#xff0c;配置后axios请求时都会baseURLurl 填写API的公共前缀后&#xff0c;将js文件导入到html文件中 <script src"../../utils/request.js"></script&…...

SQLite中的动态内存分配(五)

返回&#xff1a;SQLite—系列文章目录 上一篇&#xff1a;SQLite中的原子提交&#xff08;四&#xff09; 下一篇:自己编译SQLite或将SQLite移植到新的操作系统&#xff08;六&#xff09; ​概述 SQLite使用动态内存分配来获得 用于存储各种对象的内存 &#xff08;例如…...

快速上手Spring Cloud 十一:微服务架构下的安全与权限管理

快速上手Spring Cloud 一&#xff1a;Spring Cloud 简介 快速上手Spring Cloud 二&#xff1a;核心组件解析 快速上手Spring Cloud 三&#xff1a;API网关深入探索与实战应用 快速上手Spring Cloud 四&#xff1a;微服务治理与安全 快速上手Spring Cloud 五&#xff1a;Spring …...

如何简化多个 if 的判断结构

多少算太多&#xff1f; 有些人认为数字就是一&#xff0c;你应该总是用至少一个三元运算符来代替任何单个 if 语句。我并不这样认为&#xff0c;但我想强调一些摆脱常见的 if/else 意大利面条代码的方法。 我相信很多开发人员很容易陷入 if/else 陷阱&#xff0c;不是因为其…...

发掘服务器硬件优势:怎样有效管理、维护、更新

1. 概述 服务器是许多信息技术的核心&#xff0c;通过提供计算和存储资源&#xff0c;以用于企业和机构的数据处理和存储。服务器硬件也是服务器的核心组成部分&#xff0c;在服务器架构和配置中扮演着重要角色。 服务器硬件的优势&#xff1a; - 提供更高的性能和处理能力。…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...