当前位置: 首页 > news >正文

【C++庖丁解牛】自平衡二叉搜索树--AVL树

🍁你好,我是 RO-BERRY
📗 致力于C、C++、数据结构、TCP/IP、数据库等等一系列知识
🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油

在这里插入图片描述


目录

  • 前言
  • 1 AVL树的概念
  • 2. AVL树节点的定义
  • 3. AVL树的插入
  • 4. AVL树的旋转
    • 实现代码
  • 5 AVL树的验证
  • 6 AVL树的删除(了解)
  • 7 AVL树的性能


前言

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 它的左右子树都是AVL树
  2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  3. 平衡因子 = 右子树高度 - 左子树高度

平衡因子并不是必须的,它只是一种控制方式,帮助我们更便捷的控制树

【扩充】
这里为什么高度差为1?如果高度相等不是更平衡吗?

节点是一个一个插入的,有些情况是无法做到相等的,最优就是高度差是1;比如:两个节点的树和四个节点的树等等。

在这里插入图片描述

2. AVL树节点的定义

AVL树节点的定义:

template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;                  // 该节点的平衡因子
};

3. AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

插入节点会影响新增节点的部分祖先
更新原则:

  • 若是插入的是左节点则父节点的平衡因子减1
  • 若是插入的是右节点则父节点的平衡因子加1

是否要继续更新取决于新增节点会不会影响父节点的高度,从而决定会不会影响爷爷节点

  • 更新后,父节点所在的子树高度不变则不会影响爷爷节点

说明父节点的平衡因子是1或者-1,父节点在矮的那边插入了节点,左右均衡了,于是父节点的高度不变,则不会影响到爷爷,更新结束

  • 更新后,父节点所在的子树高度改变则会影响爷爷节点

说明更新前,父节点的平衡因子是0,父节点变得不均衡,但是不违反规则,高度改变,会影响爷爷节点继续往上更新

更新后,父节点的平衡因子为2或-2,说明该子树违反了平衡规则,需要处理->旋转
代码实现:

	bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (parent){// 更新双亲的平衡因子if (cur == parent->left){parent->_bf--;}else{parent->_bf++;}// 更新后检测双亲的平衡因子if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树的高度增加了一层,因此需要继续向上调整cur = cur->_parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent为根的树进行旋转处理if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}else{RotateRL(parent);}break;}else{// 插入之前AVL树就有问题assert(false);}}return true;}

4. AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

  1. 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。

在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
  • 如果是根节点,旋转完成后,要更新根节点
  • 如果是子树,可能是某个节点的左子树,也可能是右子树
void _RotateR(PNode pParent)
{// pSubL: pParent的左孩子// pSubLR: pParent左孩子的右孩子PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转完成之后,30的右孩子作为双亲的左孩子pParent->_pLeft = pSubLR;// 如果30的左孩子的右孩子存在,更新亲双亲if (pSubLR)pSubLR->_pParent = pParent;// 60 作为 30的右孩子pSubL->_pRight = pParent;// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲PNode pPParent = pParent->_pParent;// 更新60的双亲pParent->_pParent = pSubL;// 更新30的双亲pSubL->_pParent = pPParent;// 如果60是根节点,根新指向根节点的指针if (NULL == pPParent){_pRoot = pSubL;pSubL->_pParent = NULL;}else{// 如果60是子树,可能是其双亲的左子树,也可能是右子树if (pPParent->_pLeft == pParent)pPParent->_pLeft = pSubL;elsepPParent->_pRight = pSubL;}// 根据调整后的结构更新部分节点的平衡因子pParent->_bf = pSubL->_bf = 0;
}
  1. 新节点插入较高右子树的右侧—右右:左单旋
    在这里插入图片描述
    实现及情况考虑可参考右单旋。

  2. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = pSubLR->_bf;// 先对30进行左单旋_RotateL(pParent->_pLeft);// 再对90进行右单旋_RotateR(pParent);if(1 == bf)pSubL->_bf = -1;else if(-1 == bf)pParent->_bf = 1;
}
  1. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述
参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋
  1. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

实现代码

#pragma oncetemplate<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf; // balance factorpair<K, V> _kv;AVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _bf(0), _kv(kv){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent){if (cur == parent->left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){cur = cur->_parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 旋转处理if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}else{RotateRL(parent);}break;}else{// 插入之前AVL树就有问题assert(false);}}return true;}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}parent->_bf = 0;subR->_bf = 0;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}subL->_bf = 0;parent->_bf = 0;}void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == -1){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 1;}else if (bf == 1){subLR->_bf = 0;subL->_bf = -1;parent->_bf = 0;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false);}}private:Node* _root = nullptr;
};

5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

  1. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{// 空树也是AVL树if (nullptr == pRoot) return true;// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差int leftHeight = _Height(pRoot->_pLeft);int rightHeight = _Height(pRoot->_pRight);int diff = rightHeight - leftHeight;// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者// pRoot平衡因子的绝对值超过1,则一定不是AVL树if (diff != pRoot->_bf || (diff > 1 || diff < -1))return false;// pRoot的左和右如果都是AVL树,则该树一定是AVL树return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);}

6 AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。具体实现学生们可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

AVL树是一种自平衡的二叉搜索树,它的删除操作与插入操作类似,但需要在删除节点后进行平衡操作以保持树的平衡性。
AVL树的删除操作可以分为以下几种情况:

  1. 如果待删除的节点是叶子节点,直接删除即可。
  2. 如果待删除的节点只有一个子节点,将子节点替代待删除节点的位置。

如果待删除的节点有两个子节点,可以选择以下两种方式进行删除:

  • 找到待删除节点的前驱或后继节点,将其值复制到待删除节点,并将前驱或后继节点删除。
  • 找到待删除节点的左子树中的最大值或右子树中的最小值,将其值复制到待删除节点,并将最大值或最小值节点删除。

删除节点后,需要从被删除节点的父节点开始向上回溯,检查每个祖先节点是否平衡。如果发现某个祖先节点不平衡,需要进行相应的旋转操作来恢复平衡。

7 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

AVL树是一种自平衡二叉搜索树,它的性能相对于普通的二叉搜索树更加稳定。AVL树的性能可以从以下几个方面来介绍:

  1. 查找操作:AVL树的查找操作与普通的二叉搜索树相同,时间复杂度为O(log n),其中n为树中节点的数量。由于AVL树是平衡的,所以查找操作的性能是稳定的。

  2. 插入和删除操作:AVL树在插入和删除节点时会进行自平衡操作,以保持树的平衡性。这些自平衡操作包括旋转和重新计算节点的平衡因子。插入和删除操作的时间复杂度也是O(log n),但由于需要进行自平衡操作,所以相对于普通二叉搜索树,AVL树的插入和删除操作可能会更耗时。

  3. 平衡性:AVL树的平衡性保证了树的高度始终保持在一个较小的范围内。具体来说,AVL树的任意节点的左右子树高度差不超过1。这种平衡性保证了查找、插入和删除操作的时间复杂度都能够保持在O(log n)。

  4. 空间复杂度:AVL树的空间复杂度与节点数量成正比,即O(n)。每个节点需要存储键值对以及额外的平衡因子信息。

总的来说,AVL树在查找操作上具有较好的性能,但在插入和删除操作上可能会稍微慢一些。然而,AVL树的平衡性保证了树的高度始终保持在一个较小的范围内,从而保证了整体的性能稳定性。

相关文章:

【C++庖丁解牛】自平衡二叉搜索树--AVL树

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 前言1 AVL树的概念2. AVL…...

ES5和ES6的深拷贝问题

深拷贝我们知道是引用值的一个问题&#xff0c;因为在拷贝的时候&#xff0c;拷贝的是在内存中同一个引用。所以当其中的一个应用值发生改变的时候&#xff0c;其他的同一个引用值也会发生变化。那么针对于这种情况&#xff0c;我们需要进行深度拷贝&#xff0c;这样就可以做到…...

阿里云发送短信配置

依赖 <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.2.1</version> </dependency> <dependency><groupId>org.apache.httpcomponents</groupId&g…...

axios封装,请求取消和重试,请求头公共参数传递

axios本身功能已经很强大了&#xff0c;封装也无需过度&#xff0c;只要能满足自己项目的需求即可。 常规axios封装&#xff0c;只需要设置&#xff1a; 实现请求拦截实现响应拦截常见错误信息处理请求头设置 import axios from axios;// 创建axios实例 const service axios…...

隐私计算实训营学习五:隐语PSI介绍及开发指南

文章目录 一、SPU 实现的PSI介绍1.1 PSI定义和种类1.1.1 PSI定义和种类1.1.2 隐语PSI功能分层 1.2 SPU 实现的PSI介绍1.2.1 半诚实模型1.2.2 PSI实现位置 二、SPU PSI调度架构三、Secretflow PSI开发指南四、隐语PSI后续计划 一、SPU 实现的PSI介绍 1.1 PSI定义和种类 1.1.1 …...

ES的RestClient相关操作

ES的RestClient相关操作 Elasticsearch使用Java操作。 本文仅介绍CURD索引库和文档&#xff01;&#xff01;&#xff01; Elasticsearch基础&#xff1a;https://blog.csdn.net/weixin_46533577/article/details/137207222 Elasticsearch Clients官网&#xff1a;https://ww…...

linux通用命令 ssh命令连接慢问题排查

系列文章目录 文章目录 系列文章目录一、 ssh 连接慢3.1 查找原因3.2 解决方案 一、 ssh 连接慢 最近的 koji 服务器 使用 ssh 连接很慢。 3.1 查找原因 可以通过 ssh -vvv 192.168.0.123 或 time ssh root192.168.0.123 exit 查找原因如下&#xff1a; SERVER的SSHD会去DN…...

7.卷积神经网络与计算机视觉

计算机视觉是一门研究如何使计算机识别图片的学科&#xff0c;也是深度学习的主要应用领域之一。 在众多深度模型中&#xff0c;卷积神经网络“独领风骚”&#xff0c;已经被称为计算机视觉的主要研究根据之一。 一、卷积神经网络的基本思想 卷积神经网络最初由 Yann LeCun&a…...

Linux|如何管理多个Git身份

摘要 关于如何管理不同项目和多个Git身份。 作为一名通用软件开发者&#xff0c;我经常发现自己在处理各种各样的项目&#xff0c;每个项目都有自己的要求和期望。这包括为个人、工作和客户项目管理不同的Git身份。以下是我组织Git仓库以简化这一过程的方法。 目录组织 我将我的…...

力扣---最长回文子串---二维动态规划

二维动态规划思路&#xff1a; 首先&#xff0c;刚做完这道题&#xff1a;力扣---最长有效括号---动态规划&#xff0c;栈-CSDN博客&#xff0c;所以会有一种冲动&#xff0c;设立g[i]&#xff0c;表示以第i位为结尾的最长回文子串长度&#xff0c;然后再遍历一遍取最大长度即可…...

(一)kafka实战——kafka源码编译启动

前言 本节内容是关于kafka消息中间键的源码编译&#xff0c;并通过idea工具实现kafka服务器的启动&#xff0c;使用的kafka源码版本是3.6.1&#xff0c;由于kafka源码是通过gradle编译的&#xff0c;以及服务器是通过scala语言实现&#xff0c;我们要预先安装好gradle编译工具…...

Spring Boot 使用 Redis

1&#xff0c;Spring 是如何集成Redis的&#xff1f; 首先我们要使用jar包 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><gro…...

火车头通过关键词采集文章的原理

随着互联网信息的爆炸式增长&#xff0c;网站管理员和内容创作者需要不断更新和发布新的文章&#xff0c;以吸引更多的用户和提升网站的排名。而火车头作为一款智能文章采集工具&#xff0c;在这一过程中发挥着重要作用。本文将探讨火车头如何通过关键词采集文章&#xff0c;以…...

Kafka 面试题及参考答案

目录 1. Kafka 的核心特性是什么? 2. Kafka 为什么能够实现高吞吐量? 3. Kafka 的消息丢失是...

【Qt 学习笔记】Day1 | Qt 背景介绍

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Day1 | Qt 背景介绍 文章编号&#xff1a;Qt 学习笔记 / 01 文章目录…...

springboot3.2.4+Mybatis-plus在graalvm21环境下打包exe

springboot3.2.4Mybatis-plus在graalvm21环境下打包exe 前提条件为之前已经能直接打包springboot3.2.4项目了然后在此基础上接入Mybatis-plus&#xff0c;然后能够正常进行打包exe并且执行&#xff0c;参考之前的文章进行打包 核心配置如下 package com.example.demo.config…...

Kubernetes(K8S)学习(二):K8S常用组件

K8S常用组件 一、 Controllers1、ReplicationController(RC)2、ReplicaSet(RS)3、Deployment 二、Labels and Selectors三、Namespace&#xff08;命名空间&#xff09;1、简介2、测试2.1、创建namespace2.2、创建pod 四、Network1、集群内&#xff1a;同一个Pod中的容器通信2、…...

如何使用群晖WebDAV实现固定公网地址同步Zotero文献管理器

文章目录 前言1. Docker 部署 Trfɪk2. 本地访问traefik测试3. Linux 安装cpolar4. 配置Traefik公网访问地址5. 公网远程访问Traefik6. 固定Traefik公网地址 前言 Trfɪk 是一个云原生的新型的 HTTP 反向代理、负载均衡软件&#xff0c;能轻易的部署微服务。它支持多种后端 (D…...

【JavaSE】初识线程,线程与进程的区别

文章目录 ✍线程是什么&#xff1f;✍线程和进程的区别✍线程的创建1.继承 Thread 类2.实现Runnable接口3.匿名内部类4.匿名内部类创建 Runnable ⼦类对象5.lambda 表达式创建 Runnable ⼦类对象 ✍线程是什么&#xff1f; ⼀个线程就是⼀个 “执行流”. 每个线程之间都可以按…...

全国青少年软件编程(Python)等级考试三级考试真题2023年9月——持续更新.....

青少年软件编程&#xff08;Python&#xff09;等级考试试卷&#xff08;三级&#xff09; 分数&#xff1a;100 题数&#xff1a;38 一、单选题(共25题&#xff0c;共50分) 1.有一组数据存在列表中,things[“桌子”,“椅子”,“茶几”,“沙发”,“西瓜”,“苹果”,“草莓”,“…...

react-navigation:

我的仓库地址&#xff1a;https://gitee.com/ruanjianbianjing/bj-hybrid react-navigation&#xff1a; 学习文档&#xff1a;https://reactnavigation.org 安装核心包: npm install react-navigation/native 安装react-navigation/native本身依赖的相关包: react-nativ…...

nginx负载均衡模式

轮询 (Round Robin) 用法&#xff1a;这是Nginx默认的负载均衡策略。每个请求会按顺序分配给upstream中的后端服务器&#xff0c;即按照配置的服务器列表顺序依次分配。 upstream backend {server backend1.example.com;server backend2.example.com;server backend3.example.…...

手写简易操作系统(十七)--编写键盘驱动

前情提要 上一节我们实现了锁与信号量&#xff0c;这一节我们就可以实现键盘驱动了&#xff0c;访问键盘输入的数据也属于临界区资源&#xff0c;所以需要锁的存在。 一、键盘简介 之前的 ps/2 键盘使用的是中断驱动的&#xff0c;在当时&#xff0c;按下键盘就会触发中断&a…...

springboot中基于RestTemplate 类 实现调用第三方API接口【POST版本】

https://blog.csdn.net/Drug_/article/details/135111675 这一篇的升级版 还是先配置文件 package com.init.config;import org.apache.http.conn.ssl.NoopHostnameVerifier; import org.apache.http.conn.ssl.SSLConnectionSocketFactory; import org.apache.http.impl.clie…...

编程器固件修改教程

首发csdn&#xff0c;转载请说明出处&#xff0c;保留一切权益。 关于编程器固件 所谓编程器固件是用编程器读取嵌入式设备的FLASH存储数据生成的文件&#xff0c;类似于直接用工具复制整个硬盘 编程器固件与普通固件的差异 编程器固件是用特定的结构(按顺序、大小)将一些文件系…...

Python从原Excel表中抽出数据存入同一文件的新的Sheet(附源码)

python读取excel数据。Python在从原Excel表中抽出数据并存储到同一文件的新的Sheet中的功能&#xff0c;充分展示了其在数据处理和自动化操作方面的强大能力。这一功能不仅简化了数据迁移的过程&#xff0c;还提高了数据处理的效率&#xff0c;为数据分析和管理工作带来了极大的…...

计算机网络实验六:路由信息协议RIP

目录 6 实验六:路由信息协议RIP 6.1 实验目的 6.2 实验步骤 6.2.1 构建网络拓扑、配置各网络设备 6.2.2 网络功能验证测试 6.3 实验总结 6 实验六:路由信息协议RIP 6.1 实验目的 (1)学习RIP协议的工作原理和特点 (2)学习如何选择最短路径路由。 (3)进一步掌握…...

MySQL数据库备份策略与实践详解

目录 引言 一、MySQL数据库备份的重要性 &#xff08;一&#xff09;数据丢失的原因 &#xff08;二&#xff09;数据丢失的后果 二、MySQL备份类型 &#xff08;一&#xff09;根据数据库状态 &#xff08;二&#xff09;根据数据的完整性 &#xff08;三&#xff09;…...

String类相关oj练习

前言&#xff1a; 此处练习对应博客文章&#xff1a;公主&#xff0c;王子&#xff0c;请点击​​​​​​​ 1.第一次只出现一次的字符 做题首先看清要求和提示&#xff1a; 给定一个字符串 s &#xff0c;找到 它的第一个不重复的字符&#xff0c;并返回它的索引 。如果不…...

【Linux】进程实践项目 —— 自主shell编写

送给大家一句话&#xff1a; 不管前方的路有多苦&#xff0c;只要走的方向正确&#xff0c;不管多么崎岖不平&#xff0c;都比站在原地更接近幸福。 —— 宫崎骏《千与千寻》 自主shell命令编写 1 前言2 项目实现2.1 创建命令行2.2 获取命令2.3 分割命令2.4 运行命令 3 源代码…...