【浅尝C++】STL第二弹=>迭代器失效详解/vector常用接口使用示例/vector底层结构探索/vector模拟实现代码详解

🏠专栏介绍:浅尝C++专栏是用于记录C++语法基础、STL及内存剖析等。
🎯每日格言:每日努力一点点,技术变化看得见。
文章目录
- vector介绍
- vector常用接口及使用示例
- 构造类函数
- 迭代器的使用
- 容量操作
- 增删改查
- 迭代器失效详解与vector底层结构探索
- vector模拟实现
- 构造类函数
- 属性获取类函数
- 扩容与容量重置函数
- 插入与删除函数
- vector模拟实现代码汇总(含正向迭代器)
- vector实现二维数组
vector介绍
vector就是一个可以自动扩大容量的数组,它与顺序表具有相同的性质,如适合随机访问、尾部插入删除效率高。关于顺序表的特点,可以查阅该篇文章→数据结构线性表(含顺序表及链表)介绍
下面给出6条关于vector的概括性介绍:
- vector是表示可变大小数组的序列容器。
- 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
- 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
- vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因而存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
- 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
- 与其它动态序列容器相比(deque, list 及forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。
vector常用接口及使用示例
构造类函数
| 构造函数声明 | 接口说明 |
|---|---|
| vector() | 无参构造 |
| vector(size_type n, const value_type& val = value_type()) | 构造并初始化为n个val |
| vector(const vector& x) | 拷贝构造 |
| vector(InputIterator first, InputIterator last) | 使用迭代器进行初始化构造 |
下面给出vector各种构造类函数的使用示例↓↓↓
#include <iostream>
#include <vector>
using namespace std;void testVector()
{//无参构造vector<int> vc1;//5个'c'构造vectorvector<char> vc2(5, 'c');for(auto ch : vc2){cout << ch << " "; }cout << endl;//使用vc2构造vc3vector<char> vc3(vc2);for(auto ch : vc3){cout << ch << " "; }cout << endl;//使用容器的起始与终止迭代器构造vectorstring s = "Jammingpro";vector<char>vc4(s.begin(), s.end());for(auto ch : vc4){cout << ch << " "; }cout << endl;
}int main()
{testVector();return 0;
}

迭代器的使用
| 迭代器 | 接口说明 |
|---|---|
| begin + end | begin获取第一个数据的位置,end获取最后一个数据的下一个位置 |
| rbegin + rend | rbegin获取最后一个数据的位置,rend获取第一个数据的前一个位置 |

如上图所示,begin指向第一个元素的位置,end指向向最后一个元素的下一个位置。下面给出begin和end这俩迭代器的使用示例
#include <iostream>
#include <vector>
using namespace std;void testVector()
{vector<int> vc = {1,2,3,4,5,6,7,8};vector<int>::iterator it = vc.begin();while(it != vc.end()){cout << *it << " ";++it;}cout << endl;
}int main()
{testVector();return 0;
}

这里可以先将迭代器先理解为数组指针,it指向数组的首地址,++it就可以将指针指向下一个元素的首地址。下文将对vector的迭代器进行模拟实现。

对于反向迭代器来说,rbegin指向最后一个元素,rend指向首元素的前一个位置。其他操作与正向迭代器begin与end没有区别。对反向迭代器进行++操作,等同于对指针-1操作。也就说,反向迭代器初始化为rbegin后,每执行一次++操作,迭代器就会向前移动一个位置,而不是向后移动。
#include <iostream>
#include <vector>
using namespace std;void testVector()
{vector<int> vc = {1,2,3,4,5,6,7,8};vector<int>::reverse_iterator it = vc.rbegin();while(it != vc.rend()){cout << *it << " ";++it;}cout << endl;
}int main()
{testVector();return 0;
}

普通迭代器的类型为iterator、反向迭代器的类型为reverse_iterator,除了这两种迭代器,还有const_iterator和const_reverse_iterator,这两个迭代器用于对const类型的容器进行正反向遍历,它们不能对容器内的数据进行修改,而非const迭代器可以修改容器内的数据。↓↓↓
#include <iostream>
#include <vector>
using namespace std;void testConstVector(const vector<int> vc)
{vector<int> vc = {1,2,3,4,5,6};vector<int>::const_iterator it = vc.begin();while(it != vc.end()){*it += 1;//error!!++it;}
}void testVector()
{vector<int> vc = {1,2,3,4,5,6};vector<int>::iterator it = vc.begin();while(it != vc.end()){*it += 1;//ok!!++it;}for(auto e : vc){cout << *it << " ";}cout << endl;
}int main()
{testVector();return 0;
}
容量操作
| 接口声明 | 接口说明 |
|---|---|
| size | 获取数据个数 |
| capacity | 获取容量大小 |
| empty | 判断是否为空 |
| resize | 改变vector的size |
| reserve | 改变vector的capacity |
vector的capacity(容量)一般都会size(有效数据个数)要大。因为vector的底层是包含连续空间的顺序表,扩容时可能需要大量移动数据,扩容效率较低。因而,vector会在扩容时,按照1.5倍或2倍扩容。
下面代码用于验证vs下与g++下vector的扩容规律↓↓↓
#include <iostream>
#include <vector>
using namespace std;void testVector()
{vector<int> vc;int sz = vc.capacity();//获取初始容量for(int i = 0; i < 100; i++){vc.push_back(i);if(sz != vc.capacity()){sz = vc.capacity();cout << "vector capacity change to : " << sz << endl;}}
}int main()
{testVector();return 0;
}
vs下执行结果如下图所示,说明vs按照1.5倍左右进行扩容。

而g++下执行结果入下图所示,说明g++按照2倍左右进行扩容。

empty用于判断vector容器中的有效数据数量是否为0;reserve用于提前给vector开辟空间,如果我们预先知道将要插入1000个数据,则我们可以预先开辟1000个空间,这样可以避免频繁扩容导致的效率损失。resize:当resize指定大小n小于有效数据个数时,则会将位于下标n及n后面的有效数据删除;当resize指定大小n大于有效数据个数时,则会在size到n-1的位置填充resize传入参数中指定的数据。
下面给出这3个函数的使用示例↓↓↓
#include <iostream>
#include <vector>
using namespace std;void testVector()
{vector<int> vc;if(vc.empty()){cout << "vc is empty" << endl;}cout << "vc's capacity is " << vc.capacity() << endl;vc.reserve(100);cout << "vc's capacity is " << vc.capacity() << endl;for(int i = 0; i < 100; i++){vc.push_back(i);}cout << "vc's size is " << vc.size() << endl;
}int main()
{testVector();return 0;
}

增删改查
| 接口声明 | 接口说明 |
|---|---|
| push_back | 尾插 |
| pop_back | 尾删 |
| insert | 在pos前插入val |
| erase | 删除pos位置的数据 |
| swap | 交换两个vector的数据空间 |
| operator[ ] | 想数组一样使用[ ]进行访问 |
下面给出上面各个接口的使用示例↓↓↓
#include <iostream>
#include <vector>
using namespace std;void testVector()
{vector<int> vc;vc.push_back(1);vc.push_back(2);vc.push_back(3);vc.push_back(4);vc.push_back(5);cout << "after push back:";for(auto ch : vc){cout << ch << " ";}cout << endl;vc.pop_back();cout << "after pop back:";for(auto ch : vc){cout << ch << " ";}cout << endl;vc.insert(vc.begin(), 888);cout << "after insert:";for(auto ch : vc){cout << ch << " ";}cout << endl;vc.erase(vc.begin());cout << "after erase:";for(auto ch : vc){cout << ch << " ";}cout << endl;vector<int> vc2 = {666,777,888};cout << "before swap vc2 is:" ;for(auto ch : vc2){cout << ch << " ";}cout << endl;vc2.swap(vc);cout << "after swap:";for(auto ch : vc){cout << ch << " ";}cout << endl;vc2[2] = 999;cout << "after operator[]:";for(auto ch : vc2){cout << ch << " ";}cout << endl;
}int main()
{testVector();return 0;
}

迭代器失效详解与vector底层结构探索

我们可以通过vs的监视窗口查看到,vector底层总共3个指针,_first指向堆区开辟空间的首地址,_last指向最后一个有效元素的下一位置,_end指向指向容量的下一位置。
而迭代器底层是什么呢?由下图可以看到,vector迭代器底层是一个指向堆区空间的指针。

如果我们在vector扩容器,执行vector<int>::iteartor it = vc.begin()则可以获得vc的_first指针内容,及it的指针指向0x00000000。如果此时插入数据后,vc发生扩容,将旧空间数据拷贝到新空间,并将旧空间释放,新的_first指针内容变为0x00FCA580,而此时it中的指针仍然指向旧空间,如果此时对it进行解引用操作,就会发生非法访问的错误。(下图演示了该文字表述的内容)

vector模拟实现
我们参照SGI版本的STL命名方式,它的_start指向指向开辟的空间首地址,_final指向最后一个后效数据的下一位置,_end_of_storage指向开辟空间最后一个位置的下一位置。

下面给出即将模拟实现的vector类的框架(含默认构造及析构函数)↓↓↓
template<class T>
class vector
{
public:vector(){}~vector(){if(_start){delete[] _start;_start = _final = _end_of_storage = nullptr;}}
private:T* _start = nullptr;T* _final = nullptr;T* _end_of_storage = nullptr;
};
构造类函数
编译器自动生成的默认构造函数与拷贝赋值都是对_first、_final、_end_of_storage进行值拷贝。如下图所示。若使用vc来构造vc2,则会使得vc和vc2的成员变量保存同一份地址,当vc析构释放_first指向的空间后,vc2再析构时也会重复释放该空间,导致出错。

因此,我们需要重写拷贝构造与拷贝赋值函数
vector(const vector<T>& vc)
{_final = vc._size;_end_of_storage = vc._end_of_storage;_start = new T[_end_of_storage];memcpy(_start, vc._start, sizeof(T) * vc.size());
}vector<T>& operator=(const vector<T> vc)
{if (this != &vc){T* tmp = new T[vc._end_of_storage];memcpy(tmp, vc._start, sizeof(T) * vc._size);if (_start) delete[] _start;_start = tmp;_final = _start + vc.size();_end_of_storage = _start + vc.capacity();}
}
属性获取类函数
下面实现的empty、size、capacity、operator[]函数↓↓↓
bool empty() const
{return _start == _final;
}
size_t size() const
{return _final - _start;
}
size_t capacity() const
{return _end_of_storage - _start;
}
T& operator[](const size_t pos)
{assert(pos < size());return _start[pos];
}
扩容与容量重置函数
void reserve(const size_t& n)
{if (n > capacity()){size_t sz = size();T* tmp = new T[n];memcpy(tmp, _start, sizeof(T) * sz);if (_start) delete[] _start;_start = tmp;_final = _start + sz;_end_of_storage = _start + n;}
}void resize(const size_t& sz, const T& val = T())
{if (sz <= size()){_final = _start + sz;}else{if (sz > capacity()){reserve(sz);}for (int i = size(); i < sz; i++){_start[i] = val;}_final = _start + sz;}
}
插入与删除函数
void push_back(const T& val)
{if (size() == capacity()){int newsize = capacity() == 0 ? 10 : 2 * capacity();reserve(newsize);}_start[size()] = val;_final++;
}
void pop_back()
{assert(!empty());_final--;
}
void insert(T* pos, const T& val)
{if (size() == capacity()){int newsize = capacity() == 0 ? 10 : 2 * capacity();reserve(newsize);}T* it = _final;while (it > pos){*it = *(it - 1);--it;}*pos = val;_final++;
}
void erase(T* pos)
{assert(!empty());T* it = pos;while (it < _final){*it = *(it + 1);++it;}--_final;
}
vector模拟实现代码汇总(含正向迭代器)
★ps:insert可能会引起vector产生扩容,导致迭代器失效,SGI版本STL中将需要新的迭代器返回。下面代码中insert与erase与SGI版本返回值保持一致。
namespace jammingpro
{template<class T>class vector{typedef T* iterator;typedef const T* const_iterator;public:iterator begin(){return _start;}iterator end(){return _final;}const_iterator begin() const{return _start;}const_iterator end() const{return _final;}vector(){}vector(const vector<T>& vc){_final = vc._size;_end_of_storage = vc._end_of_storage;_start = new T[_end_of_storage];memcpy(_start, vc._start, sizeof(T) * vc.size());}vector<T>& operator=(const vector<T> vc){if (this != &vc){T* tmp = new T[vc._end_of_storage];memcpy(tmp, vc._start, sizeof(T) * vc._size);if (_start) delete[] _start;_start = tmp;_final = _start + vc.size();_end_of_storage = _start + vc.capacity();}}~vector(){if (_start){delete[] _start;_start = _final = _end_of_storage = nullptr;}}bool empty() const{return _start == _final;}size_t size() const{return _final - _start;}size_t capacity() const{return _end_of_storage - _start;}T& operator[](const size_t pos){assert(pos < size());return _start[pos];}void reserve(const size_t& n){if (n > capacity()){size_t sz = size();T* tmp = new T[n];memcpy(tmp, _start, sizeof(T) * sz);if (_start) delete[] _start;_start = tmp;_final = _start + sz;_end_of_storage = _start + n;}}void resize(const size_t& sz, const T& val = T()){if (sz <= size()){_final = _start + sz;}else{if (sz > capacity()){reserve(sz);}for (int i = size(); i < sz; i++){_start[i] = val;}_final = _start + sz;}}void push_back(const T& val){if (size() == capacity()){int newsize = capacity() == 0 ? 10 : 2 * capacity();reserve(newsize);}_start[size()] = val;_final++;}void pop_back(){assert(!empty());_final--;}iterator insert(T* pos, const T& val){int sz = pos - _start;if (size() == capacity()){int newsize = capacity() == 0 ? 10 : 2 * capacity();reserve(newsize);}T* it = _final;while (it > pos){*it = *(it - 1);--it;}*(_start + sz) = val;_final++;return _start + sz;}iterator erase(T* pos){assert(!empty());T* it = pos;while (it < _final){*it = *(it + 1);++it;}--_final;return pos;}private:T* _start = nullptr;T* _final = nullptr;T* _end_of_storage = nullptr;};
}
vector实现二维数组
如果想使用vector二维数组可以定义如下代码:
void test()
{vector<vector<int>>vc(5, vector<int>(6, 0));
}
上面的代码相当于创建了一个包含5个vector的vector容器

🎈欢迎进入浅尝C++专栏,查看更多文章。
如果上述内容有任何问题,欢迎在下方留言区指正b( ̄▽ ̄)d
相关文章:
【浅尝C++】STL第二弹=>迭代器失效详解/vector常用接口使用示例/vector底层结构探索/vector模拟实现代码详解
🏠专栏介绍:浅尝C专栏是用于记录C语法基础、STL及内存剖析等。 🎯每日格言:每日努力一点点,技术变化看得见。 文章目录 vector介绍vector常用接口及使用示例构造类函数迭代器的使用容量操作增删改查 迭代器失效详解与v…...
【pytest】pytest` 中几种常用的参数化方法
pytest 是一个强大的 Python 测试框架,它提供了多种参数化测试的方法。参数化测试允许你使用不同的输入集来运行相同的测试逻辑,从而确保代码在各种条件下都能正常工作。以下是 pytest 中几种常用的参数化方法: 1. 使用 pytest.mark.paramet…...
设计模式-装饰者模式在Java中使用实例-打印发票装饰抬头和脚注
场景 设计模式-装饰者模式在Java中的使用示例: 设计模式-装饰者模式在Java中的使用示例_java装饰者模式例子-CSDN博客 上面装饰器的调用示例如下 AbstarctComputer computer;//要买1台电脑computer new BaseComputer();//加一个内存条computer new MemoryDecor…...
parallel linux虚拟机没有root权限
前言 今天刚在parallel上装上linux虚拟机,安装的是Debian发行版。用终端输入命令时,无意间发现当前用户竟然不是root用户,岂有此理!众所周知,Linux系统一般安装之后都是默认root用户的,但是可能parallel先…...
科技下乡:数字乡村改变乡村生活方式
在科技飞速发展的时代,数字化、信息化浪潮正以前所未有的速度席卷全球。在这场科技革命中,乡村不再是滞后的代名词,而是成为了数字乡村建设的热土。科技下乡,让数字乡村成为了改变乡村生活方式的重要力量。 一、科技下乡…...
【GitLab】Ubuntu使用宝塔安装GitLab最新社区版
首先在Ubuntu安装宝塔面板 在官网可以找到脚本一键安装 安装GitLab社区版 然后在宝塔面板的“软件商店”里面找到GitLab最新社区版 12.8.1一键安装 安装过程中可能出现以下问题: 1.卡在ruby_block[wait for logrotate service socket] action run 解决办法&…...
C++入门(2)
目录 3. C输入&输出 4. 缺省(默认)参数 4.1 缺省参数概念 4.2 缺省参数分类 全缺省参数 半缺省参数 5. 函数重载 5.1 函数重载概念 6. 引用 6.1 引用概念 6.2 引用特性 6.3 常引用 6.4 使用场景 6.5 传值、传引用效率比较 6.5.1 值和引用的作为返回值类型的性能比较 6.6 引…...
Prometheus +Grafana +node_exporter可视化监控Linux + windows虚机
1、介绍 背景:需要对多台虚机进行负载可视乎监控,并进行及时的报警 2、架构图 node_exporter :主要是负责采集服务器的信息。 Prometheus :主要是负责存储、抓取、聚合、查询方面。 Grafana : 主要是…...
腾讯云容器与Serverless的融合:探索《2023技术实践精选集》中的创新实践
腾讯云容器与Serverless的融合:探索《2023技术实践精选集》中的创新实践 文章目录 腾讯云容器与Serverless的融合:探索《2023技术实践精选集》中的创新实践引言《2023腾讯云容器和函数计算技术实践精选集》整体评价特色亮点分析Serverless与Kubernetes的…...
python 字典练习
def main():dict1{姓名:张三, 工资: 5000}dict2{姓名:李四, 工资: 6600}dict3{姓名:王五, 工资: 8500}dict4{}dict1.update(dict2)#字典的写法print(dict1)dict1.setdefault("3月",0)#存在不作为,不存在则增补print(dict1)names[]list[dict1,dict2,dict3]…...
Postman进阶功能实战演练
Postman除了前面介绍的一些功能,还有其他一些小功能在日常接口测试或许用得上。今天,我们就来盘点一下,如下所示: 1.数据驱动 想要批量执行接口用例,我们一般会将对应的接口用例放在同一个Collection中,然…...
Flink基于Hudi维表Join缺陷解析及解决方案
Hudi,这个近年来备受瞩目的数据存储解决方案,无疑是大数据领域的一颗耀眼新星。其凭借出色的性能和稳定性,以及对于数据湖场景的深度适配,赢得了众多企业和开发者的青睐。然而,正如任何一项新兴技术,Hudi在…...
3.31学习总结
(本次学习总结,总结了目前学习java遇到的一些关键字和零碎知识点) 一.static关键字 static可以用来修饰类的成员方法、类的成员变量、类中的内部类(以及用static修饰的内部类中的变量、方法、内部类),另外可以编写static代码块来优化程序性…...
Android Studio控制台输出中文乱码问题
控制台乱码现象 安卓在调试阶段,需要查看app运行时的输出信息、出错提示信息。 乱码,会极大的阻碍开发者前进的信心,不能及时的根据提示信息定位问题,因此我们需要查看没有乱码的打印信息。 解决步骤: step1: 找到st…...
itextPdf生成pdf简单示例
文章环境 jdk1.8,springboot2.6.13 POM依赖 <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.13</version></dependency><dependency><groupId>com.ite…...
【Linux系列】tree和find命令
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
AI预测福彩3D第23弹【2024年4月1日预测--第4套算法重新开始计算第9次测试】
今天继续对第4套算法进行测试,因为第4套算法已连续多期命中,相对来说还算稳定。好了,废话不多说了,直接上预测的结果吧~ 2024年4月1日福彩3D的七码预测结果如下 第一套: 百位:0 1 …...
Java常见限流用法介绍和实现
目录 一、现象 二、工具 1、AtomicInteger,AtomicLong 原子类操作 2、RedisLua 3、Google Guava的RateLimiter 1) 使用 2) Demo 3) 优化demo 4、阿里开源的Sentinel 三、算法 1、计数限流 &…...
算法——图论:判断二分图(染色问题)
题目:. - 力扣(LeetCode) 方法一:并查集 class Solution { public:vector<int>father;int find(int x){if (father[x] ! x)father[x] find(father[x]);return father[x];}void add(int x1, int x2){int fa1 find(x1), f…...
三步提升IEDA下载速度——修改IDEA中镜像地址
找到IDEA的本地安装地址 D:\tool\IntelliJ IDEA 2022.2.4\plugins\maven\lib\maven3\conf 搜索阿里云maven仓库 复制https://developer.aliyun.com/mvn/guide中红框部分代码 这里也是一样的: <mirror><id>aliyunmaven</id><mirrorOf>*&…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
