当前位置: 首页 > news >正文

wireshark抓包之DNS协议

DNS协议

DNS协议的主要作用是将域名解析为对应的IP地址。当我们在浏览器中输入一个网址时,计算机需要通过DNS协议来查找该网址对应的IP地址,以便能够建立连接并访问目标资源。

DNS协议的工作流程大致如下:

  1. 用户的计算机或设备(充当DNS客户端)首先会检查本地缓存中是否有目标域名的解析结果。如果有,则直接返回IP地址,跳过后续步骤。
  2. 如果本地缓存中没有找到解析结果,客户端会向本地DNS服务器发起查询请求。
  3. 本地DNS服务器收到请求后,会先查询自己的缓存中是否有该域名的解析结果。如果有,则返回给客户端;如果没有,则继续向上级DNS服务器发起查询请求。
  4. 在查询过程中,DNS服务器会按照层次结构逐步向上查找,直到找到负责解析该域名的权威DNS服务器。
  5. 权威DNS服务器返回域名对应的IP地址给本地DNS服务器。
  6. 本地DNS服务器将解析结果缓存起来,并返回给客户端。
  7. 客户端收到IP地址后,就可以向该IP地址发起连接请求,获取网页内容。

需要注意的是,DNS协议采用UDP/TCP 53端口进行通讯。其中UDP 53端口主要用于答复DNS客户端的解析请求,而TCP 53端口用于区域复制。

wireshark抓包

很明显的可以看到协议是dns,请求里面有baidu.com

DNS查询(Query)数据包

一个DNS查询数据包通常包含以下关键信息:

  1. 事务ID (Transaction ID): 一个唯一标识符,用于匹配查询和响应。
  2. 标志 (Flags): 指示查询的类型(标准查询、递归查询等)。
  3. 问题部分 (Question Section):
    • 查询名 (QNAME): 要查询的域名。
    • 查询类型 (QTYPE): 通常是A记录(IPv4地址)或AAAA记录(IPv6地址)。
    • 查询类 (QCLASS): 通常是IN(Internet)。

DNS响应(Response)数据包

DNS响应数据包除了包含与查询数据包相似的字段(如事务ID和标志)外,还包含:

  1. 回答部分 (Answer Section): 包含与查询匹配的记录。
    • 名称 (NAME): 域名。
    • 类型 (TYPE): 记录类型(如A、AAAA等)。
    • 类 (CLASS): 记录类(如IN)。
    • 时间至过期 (TTL): 记录的有效期。
    • 资源数据长度 (RDLENGTH): 资源数据字段的长度。
    • 资源数据 (RDATA): 实际的IP地址或其他数据。
  2. 权威部分 (Authority Section): 包含负责该域名的权威DNS服务器的记录。
  3. 附加部分 (Additional Section): 包含其他与查询相关的资源记录。

相关文章:

wireshark抓包之DNS协议

DNS协议 DNS协议的主要作用是将域名解析为对应的IP地址。当我们在浏览器中输入一个网址时,计算机需要通过DNS协议来查找该网址对应的IP地址,以便能够建立连接并访问目标资源。 DNS协议的工作流程大致如下: 用户的计算机或设备(充…...

升级到 Java 21 是值得的

升级到 Java 21 是值得的 又到了一年中的这个时候——New Relic 的年度“State of the Java Ecosystem”调查结果出来了,我一如既往地深入研究了它。虽然我认为该报告做得很好并且提出了很好的问题,但我对有多少 Java 开发人员正在使用低版本感到沮丧。…...

C# 多线程

文章目录 C# 多线程进程与线程无参数的子线程带参数的子线程运行结果 销毁线程 Abort()运行结果 ThreadPool和Task运行结果 异步与同步运行结果 lock单线程运行结果 多线程运行结果 使用lock运行结果 C# 多线程 进程与线程 进程:进程就是一个应用程序,…...

快速安装sudachipy日语包

1、前往 https://rustup.rs 下载并安装 Rustup Linux系统可直接运行以下命令 Window系统需要去网站下载exe包 curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh2、安装 Rust 编译器 rustup install stable3、设置默认版本 rustup default stable4、重新安装 …...

蓝桥杯刷题day13——乘飞机【算法赛】

一、问题描述 等待登机的你看着眼前有老有小长长的队伍十分无聊,你突然想要知道,是否存在两个年龄相仿的乘客。每个乘客的年龄用一个 0 到 36500 的整数表示,两个乘客的年龄相差 365 以内就认为是相仿的。 具体来说,你有一个长度…...

大模型量化技术-BitsAndBytes

Transformers 量化技术 BitsAndBytes bitsandbytes是将模型量化为8位和4位的最简单选择。 8位量化将fp16中的异常值与int8中的非异常值相乘,将非异常值转换回fp16,然后将它们相加以返回fp16中的权重。这减少了异常值对模型性能产生的降级效果。4位量化进一步压缩了模型,并且…...

EasyExcel 复杂表头的导出(动态表头和静态表头)

问题:如图,1部分的表头是动态的根据日期变化,2部分是数据库对应的字段,静态不变的; 解决方案:如果不看1的部分,2部分内容可以根据实体类注解的方式导出,那么我们是不是可以先将动态表…...

centos7 fatal error: curl/curl.h: No such file or directory

若编译遇到此问题,可以查看环境是否libcurl库 yum list installed | grep libcurl 发现未安装libcurl库 执行libcurl库的安装命令: 1.对于Debian/Ubuntu系统: sudo apt-get install libcurl4-openssl-dev 2.对于RHEL/CentOS系统&#xf…...

【Linux】自定义协议+序列化+反序列化

自定义协议序列化反序列化 1.再谈 "协议"2.Cal TCP服务端2.Cal TCP客户端4.Json 喜欢的点赞,收藏,关注一下把! 1.再谈 “协议” 协议是一种 “约定”。在前面我们说过父亲和儿子约定打电话的例子,不过这是感性的认识&a…...

常见故障排查和优化

一、MySQL单实例故障排查 故障现象 1 ERROR 2002 (HY000): Cant connect to local MySQL server through socket /data/mysql/mysql.sock (2) 问题分析:以上情况一般都是数据库未启动或者数据库端口被防火墙拦截导致。 解决方法:启动数据库或者防火墙…...

选择华为HCIE培训机构有哪些注意事项

选择软件培训机构注意四点事项1、口碑:学员和社会人士对该机构的评价怎样? 口碑对于一个机构是十分重要的,这也是考量一个机构好不好的重要标准,包括社会评价和学员的评价和感言。誉天作为华为首批授权培训中心,一直致…...

python怎么处理txt

导入文件处理模块 import os 检测路径是否存在,存在则返回True,不存在则返回False os.path.exists("demo.txt") 如果你要创建一个文件并要写入内容 #如果demo.txt文件存在则会覆盖,并且demo.txt文件里面的内容被清空,如…...

SAMRTFORMS 转换PDF 发送邮件

最终成果: *&---------------------------------------------------------------------**& Report ZLC_FIND_EXIT*&---------------------------------------------------------------------**&根据T-CODE / 程序名查询出口、BADI增强*&-------…...

探讨在大数据体系中API的通信机制与工作原理

** 引言 关联阅读博客文章:深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章:深入理解HDFS工作原理:大数据存储和容错性机制解析 ** 在当今数字化时代,数据已经成为企业发展和决策的核心。随着数据规模的不断增长…...

算法打卡day23

今日任务: 1)39. 组合总和 2)40.组合总和II 3)131.分割回文串 39. 组合总和 题目链接:39. 组合总和 - 力扣(LeetCode) 给定一个无重复元素的数组 candidates 和一个目标数 target ,…...

每天五分钟深度学习:神经网络和深度学习有什么样的关系?

本文重点 神经网络是一种模拟人脑神经元连接方式的计算模型,通过大量神经元之间的连接和权重调整,实现对输入数据的处理和分析。而深度学习则是神经网络的一种特殊形式,它通过构建深层次的神经网络结构,实现对复杂数据的深度学习…...

基于PSO优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1卷积神经网络(CNN)在时间序列中的应用 4.2 长短时记忆网络(LSTM)处理序列依赖关系 4.3 注意力机制(Attention) 5…...

物联网监控可视化是什么?部署物联网监控可视化大屏有什么作用?

随着物联网技术的深入应用,物联网监控可视化成为了企业数字化转型的关键环节。物联网监控可视化大屏作为物联网监控平台的重要组成部分,能够实时展示物联网设备的运行状态和数据,为企业管理决策和运维监控提供了有力的支持。今天,…...

设计一个Rust线程安全栈结构 Stack<T>

在Rust中&#xff0c;设计一个线程安全的栈结构Stack<T>&#xff0c;类似于Channel<T>&#xff0c;但使用栈的FILO&#xff08;First-In-Last-Out&#xff09;原则来在线程间传送数据&#xff0c;可以通过使用标准库中的同步原语如Mutex和Condvar来实现。下面是一个…...

Docker Desktop 在 Windows 上的安装和使用

目录 1、安装 Docker Desktop 2、使用 Docker Desktop &#xff08;1&#xff09;运行容器 &#xff08;2&#xff09;查看容器信息 &#xff08;3&#xff09;数据挂载 Docker Desktop是Docker的官方桌面版&#xff0c;专为Mac和Windows用户设计&#xff0c;提供了一个简…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...