当前位置: 首页 > news >正文

深度学习pytorch——卷积神经网络(持续更新)

计算机如何解析图片?

在计算机的眼中,一张灰度图片,就是许多个数字组成的二维矩阵,每个数字就是此点的像素值(图-1)。在存储时,像素值通常位于[0, 255]区间,在深度学习中,像素值通常位于[0, 1]区间。

图-1

一张彩色图片,是使用三张图片叠加而成,即RGB(red green blue)(图-2)。

图-2

什么是卷积?

标准的神经网络是全连接的方式,全连接会获取更多的信息,但同时也包含着巨大的算力需求。在以前,算力完全不足以支撑如此巨大的计算量,但是又要进行处理,因此当时的人们联想到了人类观察事物的过程,即结合人眼观察事物的角度——先观察吸引我们的点,忽略不吸引我们的点,这称为局部相关性(Receptive Field。应用到神经网络中,就出现了卷积的概念。

卷积操作就是先仅仅观察一部分,然后移动视野观察下一部分,这就称为卷积操作(图-3)。

图-3

表现在神经网络中就相当于只连接局部相关性的属性(假设红色的线都是相关的,其它的都断开,当然红色的线都是我自己瞎画的),如图-4所示:

图-4

 表现在实例上就是图-5的情况:

图-5

卷积的数学表示:设x(t)为输入的数据,h(t)为遍历使用的矩阵,y(t)为经过卷积计算得到的矩阵,将x(t)和h(t)进行点乘运算,将每次点成的结果进行累加得到y(t)对应元素的值(公式-1)。 

公式-1

 宏观效果(图-6):

图-6

实例

以不同的 h(t) 进行卷积操作,会获取到不同的特征:

锐化(图-7):

图-7

 模糊处理(图-8):

图-8

 边缘检测(图-9):

图-9

卷积神经网络

 图-3 是以1个Kernel_channel进行卷积运算。以多个Kernel_channels进行卷积运算(图-10):

图-10

假设原来的图像是一个28*28的灰度图像,即[1, 28, 28]。使用3*3的特征矩阵以7个角度来观察这副图像,最后得到的卷积层是[7, 26, 26]。

称呼声明:

Input_channels :输入的图像的通道,彩色图像就是3,灰度图像就是1

Kernel_channels: 以多少个视角来观察图像

Kernel_size : 特征矩阵的size

Stride: 每次向下/左移动的步长

Padding: 空白的数量,补0

实例(图-11),注意右下角的标注,每个圈中的值必须相等。将同一视角不同通道得出来的矩阵进行叠加,最后会得到一个高维的特性。卷积的过程叫做特征提取。 

图-11

输出图像的大小计算(公式-2):

公式-2

代码示例:

# 1、
x=torch.rand(1,1,28,28)  #[b,c,h,w]
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=0) # weight [3,1,3,3],不补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 26, 26])# 2、
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])# 3、
layer=nn.Conv2d(1,3,kernel_size=3,stride=2,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])# 说明:
#现在基本不用layer.forward,而是用layer
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 14, 14])###### inner weight $ bias #########
#直接调用
print(layer.weight)
# Parameter containing:
# tensor([[[[-0.1249, -0.3302, -0.1774],
#           [-0.1542,  0.0873,  0.0282],
#           [-0.0006, -0.1798, -0.1030]]],
#
#
#         [[[ 0.1932,  0.3240,  0.1747],
#           [-0.2188, -0.1775, -0.0652],
#           [-0.1455, -0.1220,  0.0629]]],
#
#
#         [[[ 0.2596,  0.3017,  0.2028],
#           [-0.2629, -0.0715,  0.3267],
#           [ 0.3174, -0.1441, -0.1714]]]], requires_grad=True)print(layer.weight.shape)
# torch.Size([3, 1, 3, 3])print(layer.bias.shape)
# torch.Size([3])

向上/向下采样

最大采样,选取最大的(图-12):

图-12

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])layer=nn.MaxPool2d(2,stride=2) #最大池化,2*2的滑动窗口,步长为2
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 7, 7])

平均采样,选择平均值(图-13):

图-13

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])out=F.avg_pool2d(x,2,stride=2) #平均池化,2*2的滑动窗口,步长为2
print(out.shape)
#torch.Size([1, 3, 7, 7])

上采样,选取最邻近的(图-14):

扩展到卷积层呢?以一个5层的卷积层为例,进行分析:

 代码演示:

x=out
print(out.shape)
# torch.Size([1, 3, 7, 7])
out=F.interpolate(x,scale_factor=2,mode='nearest')# 为放大倍数
print(out.shape) 
# torch.Size([1, 3, 14, 14])
out=F.interpolate(x,scale_factor=3,mode='nearest')
print(out.shape)
# torch.Size([1, 3, 21, 21])

 扩展到卷积层

图-16

1、输入是一个32*32的灰度图像[1, 32, 32],使用一个3*3的特征矩阵进行卷积,分别从6个角度进行卷积,步长为1,会得到一个[6,1,28,28]的图像
2、上采样-》[6,1,14,14]
3、卷积-》[16,1,10,10]
4、上采样-》[16,1,5,5]
5、全连接
6、全连接
7、高斯分布

ReLU

图-17

 代码演示:

#两种方式,一种是nn.ReLU,另一种是F.relu
x=out
print(x.shape)
#torch.Size([1, 3, 7, 7])layer=nn.ReLU(inplace=True)
out=layer(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])#与上面三行等价
out=F.relu(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])#relu激活函数并不改变size大小

相关文章:

深度学习pytorch——卷积神经网络(持续更新)

计算机如何解析图片? 在计算机的眼中,一张灰度图片,就是许多个数字组成的二维矩阵,每个数字就是此点的像素值(图-1)。在存储时,像素值通常位于[0, 255]区间,在深度学习中&#xff0…...

【edge浏览器无法登录某些网站,以及迅雷插件无法生效的解决办法】

edge浏览器无法登录某些网站,以及迅雷插件无法生效的解决办法 edge浏览器无法登录某些网站,但chrome浏览器可以登录浏览器插件无法使用,比如迅雷如果重装插件重装浏览器重装迅雷后仍然出现问题 edge浏览器无法登录某些网站,但chro…...

OpenHarmony无人机MAVSDK开源库适配方案分享

MAVSDK 是 PX4 开源团队贡献的基于 MavLink 通信协议的用于无人机应用开发的 SDK,支持多种语言如 C/C、python、Java 等。通常用于无人机间、地面站与通信设备的消息传输。 MAVLink 是一种非常轻量级的消息传递协议,用于与无人机(以及机载无…...

模型训练----parser.add_argument添加配置参数

现在需要配置参数来达到修改训练的方式,我现在需要新建一个参数来开关wandb的使用。 首先就是在def parse_option():函数里添加上你要使用的变量名 parser.add_argument("--open_wandb",type bool,defaultFalse,helpopen wandb) 到config文件里增加你的…...

数字未来:探索 Web3 的革命性潜力

在当今数字化的时代,Web3作为互联网的新兴范式正逐渐崭露头角,引发了广泛的关注和探讨。本文将深入探索数字未来中Web3所蕴含的革命性潜力,探讨其对社会、经济和技术的深远影响。 1. Web3:数字世界的下一个阶段 Web3是一个正在崛…...

群晖NAS使用Docker部署大语言模型Llama 2结合内网穿透实现公网访问本地GPT聊天服务

文章目录 1. 拉取相关的Docker镜像2. 运行Ollama 镜像3. 运行Chatbot Ollama镜像4. 本地访问5. 群晖安装Cpolar6. 配置公网地址7. 公网访问8. 固定公网地址 随着ChatGPT 和open Sora 的热度剧增,大语言模型时代,开启了AI新篇章,大语言模型的应用非常广泛,包括聊天机…...

[选型必备基础信息] 存储器

存储芯片根据断电后是否保留存储的信息可分为易失性存储芯片(RAM)和非易失性存储芯片(ROM)。 简单说,存储类IC分为 ROM和RAM ROM:EEPROM / Flash / eMMC RAM:SRAM/SDRAM/DDR2/DDR3/DDR4/DDR5…...

C++——C++11线程库

目录 一,线程库简介 二,线程库简单使用 2.1 传函数指针 ​编辑 2.2 传lamdba表达式 2.3 简单综合运用 2.4 线程函数参数 三,线程安全问题 3.1 为什么会有这个问题? 3.2 锁 3.2.1 互斥锁 3.2.2 递归锁 3.3 原子操作 3…...

机器学习 | 线性判别分析(Linear Discriminant Analysis)

1 机器学习中的建模 1.1 描述性建模 以方便的形式给出数据的主要特征,实质上是对数据的概括,以便在大量的或有噪声的数据中仍能观察到重要特征。重在认识数据的主要概貌,理解数据的重要特征。 Task:聚类分析,数据降…...

TypeScript-数组、函数类型

1.数组类型 1.1类型 方括号 let arry:number[][5,2,0,1,3,1,4] 1.2 数组泛型 let arry2:Array<number>[5,2,0,1,3,1,4] 1.3接口类型 interface makeArryRule{[index:number]:number }let arry3:makeArryRule[5,2,0,1,3,1,4] 1.4伪数组 说明&#xff1a; argument…...

Python深度学习034:cuda的环境如何配置

文章目录 1.安装nvidia cuda驱动CMD中看一下cuda版本:下载并安装cuda驱动2.创建虚拟环境并安装pytorch的torch_cuda3.测试附录1.安装nvidia cuda驱动 CMD中看一下cuda版本: 注意: 红框的cuda版本,是你的显卡能装的最高的cuda版本,所以可以选择低于它的版本。比如我的是11…...

【论文笔记】Text2QR

论文&#xff1a;Text2QR: Harmonizing Aesthetic Customization and Scanning Robustness for Text-Guided QR Code Generation Abstract 二维码通常包含很多信息但看起来并不美观。stable diffusion的出现让平衡扫描鲁棒性和美观变为可能。 为了保证美观二维码的稳定生成&a…...

【ReadPapers】A Survey of Large Language Models

LLM-Survey的llm能力和评估部分内容学习笔记——思维导图 思维导图 参考资料 A Survey of Large Language Models论文的github仓库...

站群CMS系统

站群CMS系统是一种用于批量建立和管理网站的内容管理系统&#xff0c;它能够帮助用户快速创建大量的网站&#xff0c;并实现对这些网站的集中管理。以下是三个在使用广泛的站群CMS系统&#xff0c;它们各具特色&#xff0c;可以满足不同用户的需求。 1. Z-BlogPHP Z-BlogPHP是…...

landsat8数据产品说明

1、下载数据用户手册 手册下载网址&#xff0c;搜索landsat science关键词&#xff0c;并点击到官网下载。 2、用户手册目录 3、landsat8数据产品说明 具体说明在手册的第四章&#xff0c;4.1.4数据产品章节&#xff0c;具体描述如下&#xff1a; 英文意思&#xff1a; L8 的…...

Golang 内存管理和垃圾回收底层原理(二)

一、这篇文章我们来聊聊Golang内存管理和垃圾回收&#xff0c;主要注重基本底层原理讲解&#xff0c;进一步实战待后续文章 垃圾回收&#xff0c;无论是Java 还是 Golang&#xff0c;基本的逻辑都是基于 标记-清理 的&#xff0c; 标记是指标记可能需要回收的对象&#xff0c…...

OpenHarmony:全流程讲解如何编写ADC平台驱动以及应用程序

ADC&#xff08;Analog to Digital Converter&#xff09;&#xff0c;即模拟-数字转换器&#xff0c;可将模拟信号转换成对应的数字信号&#xff0c;便于存储与计算等操作。除电源线和地线之外&#xff0c;ADC只需要1根线与被测量的设备进行连接。 一、案例简介 该程序是基于…...

计算机学生求职简历的一些想法

面试真的是一件非常难的事情&#xff0c;因为在短短的半小时到一个小时&#xff0c;来判断一个同学行不行&#xff0c;其实是很不全面的。作为一个求职的同学应该怎么办呢&#xff1f;求职的同学可以提前做一些准备&#xff0c;其中比较重要的要数简历的编写。 简历的作用 简…...

网工内推 | 售前专场,需熟悉云计算技术,上市公司,提成高

01 神州数码 招聘岗位&#xff1a;售前工程师 职责描述&#xff1a; 1.负责所在区域华为IT产品线&#xff08;服务器、存储、云、虚拟化&#xff09;的售前技术支持工作&#xff0c;包括客户交流、方案编写、配置报价、投标支持、测试等&#xff1b; 2.与厂商相关人员建立和保…...

excel匹配替换脱敏身份证等数据

假如excel sheet1中有脱敏的身份证号码和姓名&#xff0c;如&#xff1a; sheet2中有未脱敏的数据数据 做法如下&#xff1a; 1、在sheet2的C列用公式 LEFT(A2,6)&REPT("*",8)&RIGHT(A2,4) 做出脱敏数据&#xff0c;用来与sheet1的脱敏数据匹配 2、在sheet…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...