当前位置: 首页 > news >正文

力扣贪心算法--第一天

前言

今天是贪心算法的第一天,算法之路重新开始!

内容

之前没了解过贪心算法。

什么是贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优。难点就是如何通过局部最优,推出整体最优。

一、455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

思路:

大饼干可以满足胃口大的,也可以满足胃口小的,应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,全局最优就是喂饱尽可能多的小孩

先将饼干数组和小孩数组排序,然后从后向前遍历小孩数组,如果饼干的大小大于或等于孩子的为空则给与,否则不给予,继续寻找选一个饼干是否符合。

func findContentChildren(g []int, s []int) int {sort.Ints(g)sort.Ints(s)child:=0for sIdx:=0;sIdx<len(s)&&child<len(g);sIdx++{if s[sIdx]>=g[child]{child++}}return child
}
二、376. 摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

思路:

将数组用坡度表示出来,

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡
func wiggleMaxLength(nums []int) int {n:=len(nums)if n<2{return n}ans:=1preDiff:=nums[1]-nums[0]if preDiff!=0{ans=2}for i:=2;i<n;i++{diff:=nums[i]-nums[i-1]if preDiff<=0&&diff>0||preDiff>=0&&diff<0{ans++preDiff=diff}}return ans
}
三、53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

思路:

负数只会拉低总和。

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优

func maxSubArray(nums []int) int {maxNum:=nums[0]for i:=1;i<len(nums);i++{if nums[i]+nums[i-1]>nums[i]{nums[i]+=nums[i-1]}if nums[i]>maxNum{maxNum=nums[i]}}return maxNum
}

最后

可预见的正在变好!加油!

相关文章:

力扣贪心算法--第一天

前言 今天是贪心算法的第一天&#xff0c;算法之路重新开始&#xff01; 内容 之前没了解过贪心算法。 什么是贪心 贪心的本质是选择每一阶段的局部最优&#xff0c;从而达到全局最优。难点就是如何通过局部最优&#xff0c;推出整体最优。 一、455.分发饼干 假设你是一…...

Nginx反向代理和缓存

一、Nginx反向代理 1.调度和代理的区别&#xff1a; 1.调度基于内核层面&#xff0c;代理基于应用层面 2.代理必须实现一手托两家 3.调度不需要监听任何端口&#xff0c;不需要工作任何应用程序&#xff0c;代理需要工作和上游服务器一模一样的进程 4.调度没有并发上限&am…...

支持多元AI场景应用,宁畅“NEX AI Lab”开放试用预约中

3月29日&#xff0c;宁畅在京举行发布会&#xff0c;正式发布“全局智算”战略&#xff0c;并在会上推出战略性新品“AI算力栈”&#xff0c;旨在有效解决大模型产业落地的全周期问题。 据宁畅CTO赵雷介绍&#xff0c;“AI算力栈”集成了宁畅在AI计算领域的软硬件能力&#xff…...

Git 如何合并多个连续的提交

我平常的编程喜欢是写一段代码就提交一次&#xff0c;本地一般不攒代码&#xff0c;生怕本地有什么闪失导致白干。但这样就又导致一个问题&#xff1a;查看历史日志时十分不方便&#xff0c;随便找一段提交可以看到&#xff1a; > git log --oneline 8f06be5 add 12/qemu-h…...

k8s 基础入门

1.namespace k8s中的namespace和docker中namespace是两码事&#xff0c;可以理解为k8s中的namespace是为了多租户&#xff0c;dockers中的namespace是为了网络、资源等隔离 2.deployment kubectl create #新建 kubectl aply #新建 更新 升级&#xff1a; 滚动升级&#x…...

【Python项目】AI动物识别工具

目录 背景 技术简介 系统简介 界面预览 背景 成像技术在全球科技发展中扮演了关键角色。在科学研究领域&#xff0c;拍摄所得的图像成为了一种不可或缺的研究工具。特别是在生态学与动物学研究中&#xff0c;鉴于地球的广阔地域和多样的气候条件&#xff0c;利用图像技术捕…...

逻辑回归(Logistic Regression)详解

逻辑回归是一种用于解决二分类问题的统计方法&#xff0c;它通过构建一个模型来预测某个事件的概率。 以下是逻辑回归的一些关键要点&#xff1a; 适用场景&#xff1a;逻辑回归特别适合于处理二分类问题&#xff0c;即两个类别的分类问题&#xff0c;例如判断一封邮件是否为…...

.vimrc文件的语句语法

本文结构&#xff1a; a、简介 b、详细解释其中的一些常见语句和语法。 a、.vimrc 文件是 Vim 编辑器用于配置用户设置和自定义行为的文件。当 Vim 启动时&#xff0c;它会读取 .vimrc 文件中的命令和设置&#xff0c;并根据这些指令来配置编辑器的行为。 b、.vimrc 文件中…...

c语言之函数指针作形参

在一些c语言的大工程中&#xff0c;会在定义的函数中&#xff0c;把一些其他函数指针作为本函数形参。 函数指针作形参的例子 代码如下: #include<stdio.h> int max(int a,int b) { return(a>b?a:b); } int min(int a,int b) { return(a<b?a:b); } i…...

python文件的读取操作

打开文件 fopen("F:/python/helloworld/测试.txt","r",encoding"UTF-8")读取文件 print(f"读取10个字节的结果{f.read(10)}") print(f"读取全部字节的结果{f.read()}") linesf.readlines() print(f"{lines}")读…...

查看并设定【网络适配器】的优先级(跃点数)

目录 前言&#xff1a; 1.查看所有的适配器 2.修改优先级&#xff08;需要以管理员身份运行&#xff09; 跃点数&#xff08;InterfaceMetric &#xff09; DHCP 3.修改后的效果 pwoerShell 再次运行之前的程序 4.其他 参考 网络适配器1&#xff0c;8相关知识介绍1 …...

深入理解 Hadoop 上的 Hive 查询执行流程

在 Hadoop 生态系统中&#xff0c;Hive 是一个重要的分支&#xff0c;它构建在 Hadoop 之上&#xff0c;提供了一个开源的数据仓库系统。它的主要功能是查询和分析存储在 Hadoop 文件中的大型数据集&#xff0c;包括结构化和半结构化数据。Hive 在数据查询、分析和汇总方面发挥…...

JS封装网页进入/退出全屏功能,兼容各大主流浏览器

1、演示 2、封装进入全屏函数 mozRequestFullScreen&#xff1a;兼容Firefox webkitRequestFullscreen&#xff1a;兼容 Chrome、Safari、Opera msRequestFullscreen&#xff1a;兼容&#xff1a;IE/Edge const enter () > {const element document.documentElementif (el…...

el-table的复选框勾选整行变色

要实现el-table的复选框勾选整行变色&#xff0c;你可以使用element-ui提供的row-class-name属性结合scoped slot来完成。 首先&#xff0c;你需要为el-table组件添加 row-class-name 属性&#xff0c;并给它绑定一个方法。在这个方法中&#xff0c;你可以根据你的业务逻辑来判…...

一步一步写线程之八线程池的完善之二数据结构封装

一、数据容器 在前面分析过&#xff0c;不管是线程任务的封装还是同步数据队列的封装&#xff0c;都是需要一个数据结构的。一用来说&#xff0c;如果没有什么特殊的原因&#xff0c;开发者都是使用STL中数据结构。比如前面经常见到的std::queue,std::deque,std::vector,std::…...

go连接数据库(原生)

根据官网文档 Go Wiki: SQL Database Drivers - The Go Programming Language 可以看到go可以连接的关系型数据库 ​ 常用的关系型数据库基本上都支持&#xff0c;下面以mysql为例 下载mysql驱动 打开上面的mysql链接 GitHub - go-sql-driver/mysql: Go MySQL Driver i…...

【C语言】2048小游戏【附源码】

欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 一、游戏描述&#xff1a; 2048是一款数字益智类游戏&#xff0c;玩家需要使用键盘控制数字方块的移动&#xff0c;合并相同数字的方块&#xff0c;最终达到数字方块上出现“2048”的目标。 每次移动操作&#xff0c;所…...

部署项目遇到的各种问题总结

文章目录 前言一、后端问题 jar包运行出现错误宝塔面板使用jdk17二、数据库问题 版本问题三、前端问题 连不上后端总结 前言 在做完项目之后&#xff0c;为了让别人访问到自己的网站&#xff0c;就需要部署前端后端以及数据库&#xff0c;但是在部署的过程中出现了各种问题和困…...

JavaSE:抽象类和接口

目录 一、前言 二、抽象类 &#xff08;一&#xff09;抽象类概念 &#xff08;二&#xff09;使用抽象类的注意事项 &#xff08;三&#xff09;抽象类的作用 三、接口 &#xff08;一&#xff09;接口概念 &#xff08;二&#xff09;接口语法规则 &#xff08;三&a…...

发票是扫码验真好,还是OCR后进行验真好?

随着科技的进步&#xff0c;电子发票的普及使得发票的验真方式也在不断演进。目前&#xff0c;我们常见的发票验真方式主要有两种&#xff1a;一种是扫描发票上的二维码进行验真&#xff0c;另一种是通过OCR&#xff08;Optical Character Recognition&#xff0c;光学字符识别…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...