当前位置: 首页 > news >正文

牛客练习赛123(A,B,C,D)

牛客挑战赛,练习赛和小白月赛周赛不是一种东西。这玩意跟CF的div12差不多难度。而且找不到题解。所以决定不等题解补题了,直接写题解了。

比赛链接

光速签到下班,rk++。感觉E可能能补掉,看情况补吧。

B题感觉之前考了两次,结论和证明构造过程需要理解,赛时记得结论直接秒了。C题是不太裸的裸完全背包,思路不裸但是写法裸。D题需要加个优化,思路看的别人的,很妙。


A 炸鸡块哥哥的粉丝题

思路:

签到,截取前一半的子串即可。

code:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;int n;
string s;int main(){cin>>n>>s;cout<<s.substr(0,(n+1)/2);return 0;
}

B 智乃想考一道鸽巢原理

思路:

看了评论区题解才发现,自己这么长时间理解的方法原来就是鸽巢原理。指路

我们想让某一种小球留下来,肯定先让其他小球先配对抵消掉,其他小球抵消剩下的再用这种小球来消。那么问题就变成了求其他小球抵消剩下的小球有几个,如果剩下的球比这种小球少,那就可以剩下这种小球,否则就剩不下。

我们把最多的那个小球看作是鸽巢,然后剩余的小球看作是鸽子,也就是鸽巢有 m x mx mx 个,鸽子有 r m = t o t − a i rm=tot-a_i rm=totai 个。

  1. m x > ⌊ r m 2 ⌋ mx\gt \left\lfloor\dfrac{rm}2\right\rfloor mx>2rm 时:可以每个鸽巢放入一只鸽子,此时剩余的小球个数就是剩余的鸽巢个数,即 m x − ( r m − m x ) = 2 ∗ m x − r m mx-(rm-mx)=2*mx-rm mx(rmmx)=2mxrm
  2. m x ≤ ⌊ r m 2 ⌋ mx\le \left\lfloor\dfrac{rm}2\right\rfloor mx2rm 时:可以用其他小球来充当鸽巢,使得鸽巢拓展到 ⌈ r m 2 ⌉ \left\lceil\dfrac{rm}2\right\rceil 2rm 个。然后其他小球依次放入鸽巢即可,可以保证存在一种方法使得小球不会放在同种颜色小球的鸽巢里(因为最少可以只有一种颜色又当鸽巢又放小球,其他颜色就不可能重复了。而每种颜色小球个数不会超过 ⌈ r m 2 ⌉ \left\lceil\dfrac{rm}2\right\rceil 2rm 个,所以这种颜色可以不重复)。此时会剩余 r m % 2 rm\%2 rm%2 个鸽巢。

所以我们枚举 i i i 时,对每个 i i i 只要知道剩余的小球的总个数和剩余最大个数的小球,就可以计算其他小球抵消最后会剩多少小球,也就知道能否剩下这种小球。我们可以设置一个变量记录所有小球个总个数,并处理出前缀最大值和后缀最大值,这样就可以快速查询了。

code:

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn=1e6+5;int T,n;
int a[maxn],prem[maxn],sufm[maxn];
ll tot;int main(){cin>>T;while(T--){cin>>n;tot=0;for(int i=1;i<=n+1;i++)prem[i]=sufm[i]=0;for(int i=1;i<=n;i++){cin>>a[i];prem[i]=max(prem[i-1],a[i]);tot+=a[i];}for(int i=n;i>=1;i--)sufm[i]=max(sufm[i+1],a[i]);for(int i=1;i<=n;i++){ll mx=max(prem[i-1],sufm[i+1]),rm=tot-a[i],lst;if(mx>rm/2)lst=2*mx-rm;else lst=rm&1;cout<<"01"[a[i]>lst]<<" \n"[i==n];}}return 0;
}

C 智乃想考一道完全背包(Easy version)

思路:

如果位置 k k k 上的物品本来就很好了,那么肯定选这个物品就行了。但是如果有个很好的物品远离位置 k k k,那么我们就需要选上从这个位置到 k k k 上的所有物品,才能选上这一个物品,它就相当于和中间的物品进行捆绑销售了。

反正一定会捆绑销售,所以我们不如一开始就将 l ∼ k l\sim k lk k ∼ r k\sim r kr 位置上的物品进行绑定,把它们变成一个物品,然后跑完全背包。

不过由于我们选了 l ∼ k l\sim k lk 的物品的话,我们还能去拓展另一边到 r r r,并省下一个 k k k。所以另一边我们也需要绑定过来,也就是说需要把 l ∼ r l\sim r lr 上的物品进行绑定。

如果我们以位置为横坐标,每个位置上物品选择的个数为纵坐标画直方图的话,它的形状就是一个金字塔型。我们绑定物品同时选取,其实就相当于绑定一行,每行都是整块选取。

时间复杂度看似是 O ( n 2 ∗ m ) O(n^2*m) O(n2m) 的。但是由于背包容量最多 m m m,重量超过 m m m 的物品我们根本更新不了答案,所以最多有 m 2 m^2 m2 级别个物品会更新 d p dp dp 值,所以时间复杂度最多是 O ( n 2 + m 3 ) O(n^2+m^3) O(n2+m3) 的。

code:

没必要开longlong

#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=2005;
const int maxm=505;
typedef long long ll;
const ll linf=1e18;int n,m,k;
ll dp[maxm];ll tw[maxn],tv[maxn];int main(){cin>>n>>m>>k;for(int i=1;i<=n;i++){cin>>tw[i]>>tv[i];tw[i]+=tw[i-1];tv[i]+=tv[i-1];}for(int l=1;l<=k;l++)for(int r=k;r<=n;r++){ll w=tw[r]-tw[l-1],v=tv[r]-tv[l-1];for(int j=w;j<=m;j++)dp[j]=max(dp[j],dp[j-w]+v);}for(int i=1;i<=m;i++){dp[i]=max(dp[i-1],dp[i]);cout<<dp[i]<<" ";}return 0;
}

D 智乃想考一道完全背包(Hard version)

思路:

朴素的想法是设 d p [ k ] [ j ] dp[k][j] dp[k][j] 表示位置 k k k 为中心,容量为 j j j 的最大价值。直接枚举 k k k 的位置,对每个位置做法和上面相同,这样时间复杂度就会变成 O ( n ∗ m 3 ) O(n*m^3) O(nm3),会 T T T 1 3 \frac13 31 的点。

考虑优化,发现对于选取了区间 l ∼ r l\sim r lr 的整块物品,它可以去更新 k ∈ [ l , r ] k\in[l,r] k[l,r] 的所有位置,而没有必要在选取不同 k k k 的时候分别去更新每个 d p [ k ] [ − ] dp[k][-] dp[k][]

原本我们先从小到大枚举 l l l,固定好 l l l 后,然后枚举 r r r k k k,对一个位置 k k k,它应该用 [ l , r = k ∼ n ] [l,r=k\sim n] [l,r=kn] 的物品来更新。这里为了实现上面说的优化,我们从大到小枚举 r r r,并且令 k = r k=r k=r,这样算出来的 d p [ r ] [ − ] dp[r][-] dp[r][] 就考虑到了 [ l , r = k ∼ n ] [l,r=k\sim n] [l,r=kn] 所有物品。 d p [ r ] [ − ] dp[r][-] dp[r][] 直接从 d p [ r + 1 ] [ − ] dp[r+1][-] dp[r+1][] 转移过来或者从 [ l , r ] [l,r] [l,r] 这件物品转移过来即可

这样优化后,由于不需要枚举 k k k 的位置,时间复杂度被优化成了 O ( m 3 ) O(m^3) O(m3)。可以通过。

code:

#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=2005;
const int maxm=505;
typedef long long ll;
const ll linf=1e18;int n,m;
ll dp[maxn][maxm];
//位置为k,背包容量为j ll tw[maxn],tv[maxn];
int ans[maxn],id[maxn];int main(){cin>>n>>m;for(int i=1;i<=n;i++){cin>>tw[i]>>tv[i];tw[i]+=tw[i-1];tv[i]+=tv[i-1];}for(int l=1;l<=n;l++){ll w,v;for(int r=n;r>=l;r--){w=tw[r]-tw[l-1];v=tv[r]-tv[l-1];for(int j=w;j<=m;j++)dp[r][j]=max(dp[r][j],max(dp[r+1][j],dp[r][j-w]+v));}}for(int i=1;i<=m;i++){ll maxx=-linf,idx;for(int k=1;k<=n;k++){dp[k][i]=max(dp[k][i-1],dp[k][i]);if(dp[k][i]>maxx){maxx=dp[k][i];idx=k;}}ans[i]=maxx;id[i]=idx;}for(int i=1;i<=m;i++)cout<<ans[i]<<" \n"[i==m];for(int i=1;i<=m;i++)cout<<id[i]<<" \n"[i==m];return 0;
}

相关文章:

牛客练习赛123(A,B,C,D)

牛客挑战赛&#xff0c;练习赛和小白月赛周赛不是一种东西。这玩意跟CF的div12差不多难度。而且找不到题解。所以决定不等题解补题了&#xff0c;直接写题解了。 比赛链接 光速签到下班&#xff0c;rk。感觉E可能能补掉&#xff0c;看情况补吧。 B题感觉之前考了两次&#x…...

docker部署-RabbitMq

1. 参考 RabbitMq官网 docker官网 2. 拉取镜像 这里改为自己需要的版本即可&#xff0c;下面容器也需要同理修改 docker pull rabbitmq:3.12-management3. 运行容器 docker run \ --namemy-rabbitmq-01 \ -p 5672:5672 \ -p 15672:15672 \ -d \ --restart always \ -…...

【智能算法】蜜獾算法(HBA)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2021年&#xff0c;FA Hashim等人受到自然界中蜜獾狩猎行为启发&#xff0c;提出了蜜獾算法&#xff08;(Honey Badger Algorithm&#xff0c;HBA&#xff09;。 2.算法原理 2.1算法思想 蜜獾以其…...

9、鸿蒙学习-开发及引用静态共享包(API 9)

HAR&#xff08;Harmony Archive&#xff09;是静态共享包&#xff0c;可以包含代码、C库、资源和配置文件。通过HAR可以实现多个模块或多个工程共享ArkUI组件、资源等相关代码。HAR不同于HAP&#xff0c;不能独立安装运行在设备上&#xff0c;只能作为应用模块的依赖项被引用。…...

[Pytorch]:PyTorch中张量乘法大全

在 PyTorch 中&#xff0c;有多种方法可以执行张量之间的乘法。这里列出了一些常见的乘法操作&#xff1a; 总结&#xff1a; 逐元素乘法&#xff1a;*ortorch.mul()矩阵乘法&#xff1a;ortorch.mm()ortorch.matmul()点积&#xff1a;torch.Tensor.dot()批量矩阵乘法&#xff…...

【软考】防火墙技术

目录 1. 概念2. 包过滤防火墙3. 应用代理网关防火墙4. 状态检测技术防火墙 1. 概念 1.防火墙(Firewall)是建立在内外网络边界上的过滤封锁机制&#xff0c;它认为内部网络是安全和可信赖的&#xff0c;而外部网络是不安全和不可信赖的。2.防火墙的作用是防止不希望的、未经授权…...

OpenHarmony实战:Makefile方式组织编译的库移植

以yxml库为例&#xff0c;其移植过程如下文所示。 源码获取 从仓库获取yxml源码&#xff0c;其目录结构如下表&#xff1a; 表1 源码目录结构 名称描述yxml/bench/benchmark相关代码yxml/test/测试输入输出文件&#xff0c;及测试脚本yxml/Makefile编译组织文件yxml/.gitat…...

嵌入式C语言--GPT通用定时器

嵌入式C语言–GPT通用定时器 嵌入式C语言--GPT通用定时器 嵌入式C语言--GPT通用定时器一. GPT基本概念二. GPT的作用三. GPT通道的四个状态四. Continuous/One-Shot模式3.1&#xff09;Continuous模式3.2&#xff09;One-Shot模式 一. GPT基本概念 GPT即General Purpose Timer…...

『Apisix系列』破局传统架构:探索新一代微服务体系下的API管理新范式与最佳实践

一、『Apisix安装部署』 &#x1f680; 1.1 手把手教你从零部署APISIX高性能API网关 二、『Apisix入门篇』 &#x1f680; 2.1 从零到一掌握Apache APISIX&#xff1a;架构解析与实战指南 三、『Apisix进阶篇』 &#x1f680; 3.1 动态负载均衡&#xff1a;APISIX的实战演练…...

如何在极狐GitLab 自定义 Pages 域名、SSL/TLS 证书

本文作者&#xff1a;徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了在极狐GitLab 用户…...

React Native 应用打包

引言 在将React Native应用上架至App Store时&#xff0c;除了通常的上架流程外&#xff0c;还需考虑一些额外的优化策略。本文将介绍如何通过配置App Transport Security、Release Scheme和启动屏优化技巧来提升React Native应用的上架质量和用户体验。 配置 App Transport…...

单链表就地逆置

算法思想&#xff1a;构建一个带头结点的单链表L&#xff0c;然后访问链表中的每一个数据结点&#xff0c;将访问到的数据结点依此插入到L的头节点之后。 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> typedef int ElemType; typedef s…...

MTU/TCPMSS/VLAN/ACCESS/TRUNK/HYBRID

MTU RFC标准定义以太网的默认MTU值为1500 最小64字节是为了保证最极端的冲突能被检测到&#xff0c;64字节是能被检测到的最小值&#xff1b;最大不超过1518字节是为了防止过长的帧传输时间过长而占用共享链路太长时间导致其他业务阻塞。所以规定以太网帧大小为64~1518字节&am…...

Spring Boot的基础知识和应用

在快速发展的软件开发领域&#xff0c;Spring Boot已经成为了一个广受欢迎的框架&#xff0c;它极大地简化了Spring应用的初始搭建以及开发过程。Spring Boot遵循“约定优于配置”的原则&#xff0c;通过默认配置减少了开发者的配置工作量&#xff0c;使得开发者能够更专注于业…...

【Linux】详解动静态库的制作和使用动静态库在系统中的配置步骤

一、库的作用 1、提高开发效率&#xff0c;让开发者所有的函数实现不用从零开始。 2、隐藏源代码。 库其实就是所有的.o文件用特定的方式进行打包形成一个文件&#xff0c;各个.o文件包含了源代码中的机器语言指令。 二、动态库和静态库的制作和使用 2.1、静态库的制作和使用…...

开源模型应用落地-qwen1.5-7b-chat-LoRA微调(二)

一、前言 预训练模型提供的是通用能力,对于某些特定领域的问题可能不够擅长,通过微调可以让模型更适应这些特定领域的需求,让它更擅长解决具体的问题。 本篇是开源模型应用落地-qwen-7b-chat-LoRA微调(一)进阶篇,学习通义千问最新1.5系列模型的微调方式。 二、术语介绍 …...

【现代企业管理】企业组织结构和组织文化的理论与实践——以华为为例

一、前言 管理是科学和艺术的统一体&#xff0c;它是企业成长的保证。企业管理中&#xff0c;管理者面对的往往不是一个完整的系统&#xff0c;而是各种不具有整体规律性的零碎信息的总和&#xff0c;因此进行信息的整合和研究是管理的重点和关键。 组织管理作为管理的四大职…...

【Kotlin】Sequence简介

1 前言 序列&#xff08;Sequence&#xff09;是 Kotlin 中为方便操作集合及其元素而定制的接口&#xff0c;是一个延迟获取数据的集合&#xff0c;只有需要元素时才会生产元素。在处理大量数据时&#xff0c;序列可以显著地提升性能。 Sequence 类似 Java 中的 Stream&#xf…...

【Java】Thread详解

&#x1f352;前言 本文将从以下几方面来展开对Thread的介绍。 1.线程创建 2.线程中断 3.线程等待 4.线程休眠 在前面的文章中&#xff0c;已经总结了关于Thread的一些理解。 在阅读本文之前&#xff0c;最好对其有一些基础的了解。 文章链接: 【JavaSE】进程是什么&#xff1f…...

QT TCP和UDP网络编程

代表网络概念的QTcpSocket,QTcpServer和QUdpSocket&#xff0c;以及QNetworkRequest,QNetworkReply和QNetworkAccessManager之类的高级类来执行使用通用协议的网络操作。 它还提供了QNetworkConfiguration,QNetworkConfigurationManager和QNetworkSession等&#xff0c;实现承载…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...