当前位置: 首页 > news >正文

Successive Convex Approximation算法的学习笔记

文章目录

    • 一、代码debug
    • 二、原理

本文主要参考了CSDN上的 另一篇文章,但规范了公式的推导过程和修缮了部分代码

一、代码debug

首先,我们将所有的代码放到MATLAB中,很快在命令行中出现了错误信息

在这里插入图片描述
很显然有问题,但是我不知道发生了什么问题。我猜测可能是求解器没有正确安装,因此我正确安装了Gurobi求解器

在这里插入图片描述

注意安装Gurobi求解器需要验证license,具体内容可以查询网络上的安装教程。在命令行中输入grbgetkey+licence 就可以完成激活。

在这里插入图片描述


但此时还是有问题,我经过查询得知是MEX文件无法指定,是系统路径没有添加gurobi文件的bin,因此我添加到系统路径中

在这里插入图片描述
在这里插入图片描述
此后文件便可以正确运行了,结果如下。

在这里插入图片描述
在这里插入图片描述

二、原理

现考虑如下非凸二次规划问题

min ⁡ f ( x , y ) = [ x , y ] Q [ x , y ] T = x 2 + x y − y 2 s.t. − 1 ≤ x ≤ 1 − 1 ≤ y ≤ 1 \begin{aligned} &\operatorname*{min}f(x,y)&& \left.=\left[\begin{matrix}{x,y}\\\end{matrix}\right.\right]Q\left[\begin{matrix}{x,y}\\\end{matrix}\right]^{T} \\ &&&=x^{2}+xy-y^{2} \\ &\text{s.t.}&& -1\leq x\leq1 \\ &&&-1\leq y\leq1 \end{aligned} minf(x,y)s.t.=[x,y]Q[x,y]T=x2+xyy21x11y1

其中,

Q = [ 1 0.5 0 5 ] . Q=\begin{bmatrix}1&0.5\\0&5\\\end{bmatrix}. Q=[100.55].

原问题的目标函数可以通过特征值分解转化为凸函数减去凸函数的形式,凸函数减去凸函数未必是凸函数。

Q = V D V T = V ( λ P − λ N ) V T = V λ P V T ⏟ P − V λ N V T ⏟ N \begin{aligned}Q=VDV^T=V\left(\lambda_P-\lambda_N\right)V^T=\underbrace{V\lambda_PV^T}_{P}-\underbrace{V\lambda_NV^T}_{N}\end{aligned} Q=VDVT=V(λPλN)VT=P VλPVTN VλNVT

其中,矩阵 P P P N N N 都是半正定矩阵,矩阵 D D D 的表达式如下

D = [ λ 1 λ 2 ⋱ λ k λ k + 1 ⋱ ] = [ λ 1 λ 2 ⋱ λ k 0 ⋱ ] ⏟ λ P − [ 0 0 ⋱ 0 − λ k + 1 ⋱ ] ⏟ λ N D=\left.\left[\begin{array}{cccc}\lambda_{1}& & & & & \\ &\lambda_{2}& & & &\\ & & \ddots & & &\\ & & & \lambda_{k}& &\\ & & & & \lambda_{k+1} &\\ & & & & &\ddots \end{array}\right.\right] =\underbrace{\left.\left[\begin{array}{cccc}\lambda_{1}& & & & & \\ &\lambda_{2}& & & &\\ & & \ddots & & &\\ & & & \lambda_{k}& &\\ & & & & 0 &\\ & & & & &\ddots \end{array}\right.\right]}_{\lambda_P} -\underbrace{\left.\left[\begin{array}{cccc}0& & & & & \\ &0 & & & &\\ & & \ddots & & &\\ & & &0& &\\ & & & & - \lambda_{k+1} &\\ & & & & &\ddots \end{array}\right.\right]}_{\lambda_N} D= λ1λ2λkλk+1 =λP λ1λ2λk0 λN 000λk+1

其中 λ 1 , λ 2 , … , λ k ≥ 0 , λ k + 1 , λ k + 2 , … < 0 \lambda_1,\lambda_2,\ldots,\lambda_k\geq0,\lambda_{k+1},\lambda_{k+2},\ldots<0 λ1,λ2,,λk0,λk+1,λk+2,<0

对目标函数的第二项 [ x , y ] N [ x , y ] T \left[x,y\right]N[x,y]^T [x,y]N[x,y]T 在点 ( x ∗ , y ∗ ) (x^{*},y^{*}) (x,y) 处进行凸近似,即在点 ( x ∗ , y ∗ ) (x^{*},y^{*}) (x,y) 处进行一阶泰勒展开

− [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T − [ ∇ ( [ x , y ] N [ x , y ] T ) ∣ x ∗ , y ∗ ] T ( [ x , y ] − [ x ∗ , y ∗ ] ) T = − [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T − ( 2 N [ x ∗ , y ∗ ] T ) T ( [ x , y ] − [ x ∗ , y ∗ ] ) T = − 2 [ x ∗ , y ∗ ] N [ x , y ] T + [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T \begin{aligned}&-\left[x^*,y^*\right]N\left[x^*,y^*\right]^T-\left[\nabla\left(\left[x,y\right]N\big[x,y\big]^T\right)\right|_{x^*,y^*}\Big]^T\left(\left[x,y\right]-\left[x^*,y^*\right]\right)^T\\ &=-\left[x^*,y^*\right] N \left[x^*,y^*\right]^T -\left(2N\left[x^*,y^*\right]^T\right)^T\left(\left[x,y\right]-\left[x^*,y^*\right]\right)^T\\ &=-2{\Big[}x^{*},y^{*}{\Big]}N{\Big[}x,y{\Big]}^{T}+{\Big[}x^{*},y^{*}{\Big]}N{\Big[}x^{*},y^{*}{\Big]}^{T} \end{aligned} [x,y]N[x,y]T[([x,y]N[x,y]T) x,y]T([x,y][x,y])T=[x,y]N[x,y]T(2N[x,y]T)T([x,y][x,y])T=2[x,y]N[x,y]T+[x,y]N[x,y]T

至此,原问题可转化为:
min ⁡ f ( x , y ) = [ x , y ] P [ x , y ] T − 2 [ x ∗ , y ∗ ] N [ x , y ] T + [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T s . t . − 1 ≤ x ≤ 1 − 1 ≤ y ≤ 1 \begin{aligned} &\min & &f\left(x,y\right)=\left[x,y\right]P\left[x,y\right]^{T}-2\left[x^{*},y^{*}\right]N\left[x,y\right]^{T}+\left[x^{*},y^{*}\right]N\left[x^{*},y^{*}\right]^{T} \\ &s.t.& &-1\leq x\leq1 \\ & & &-1\leq y\leq1 \end{aligned} mins.t.f(x,y)=[x,y]P[x,y]T2[x,y]N[x,y]T+[x,y]N[x,y]T1x11y1

clear all
close all
clcQ=[1,0.5;0.5,-1];x=sdpvar(2,1);
xmin=-1;
xmax=1;
Constraints=[];
Constraints=[Constraints,xmin<=x<=xmax];
ops = sdpsettings('solver', 'gurobi', 'verbose', 0);[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立
lambda_P=D;
lambda_N=-D;
lambda_P(find(D<0))=0;
lambda_N(find(D>0))=0;
P=V*lambda_P*V';
N=V*lambda_N*V';
x0=[0.5;0.5];
x_temp=x0;
while(1)f_k=(x'*P*x-2*x_temp'*N*x+x_temp'*N*x_temp);sol=solvesdp(Constraints,f_k,ops);display([sol.info,' 目标函数值:',num2str(value(x_temp'*Q*x_temp))])x_temp_before=x_temp;x_temp=value(x);if sqrt(sum((x_temp-x_temp_before).^2)/length(x_temp))<1e-10breakend
end
x_result=x_tempX = gridsamp([-1 -1;1 1], 40);
[m,~]=size(X);
YX=zeros(m,1);
for i=1:size(X,1)x=X(i,:);y=x*Q*x';YX(i)=y;
end
X1 = reshape(X(:,1),40,40); X2 = reshape(X(:,2),40,40);
YX = reshape(YX, size(X1));
figure(1), mesh(X1, X2, YX)%绘制预测表面
hold on
scatter3(x_temp(1),x_temp(2),x_temp'*Q*x_temp,200,'r','pentagram','filled')

相关文章:

Successive Convex Approximation算法的学习笔记

文章目录 一、代码debug二、原理 本文主要参考了CSDN上的 另一篇文章&#xff0c;但规范了公式的推导过程和修缮了部分代码 一、代码debug 首先&#xff0c;我们将所有的代码放到MATLAB中&#xff0c;很快在命令行中出现了错误信息 很显然有问题&#xff0c;但是我不知道发生…...

IoT数采平台2:文档

IoT数采平台1&#xff1a;开篇IoT数采平台2&#xff1a;文档IoT数采平台3&#xff1a;功能IoT数采平台4&#xff1a;测试 【平台功能】 基础配置、 实时监控、 规则引擎、 告警列表、 系统配置 消息通知&#xff1a;Websocket 设备上线、设备下线、 数据变化、 告警信息、 实时…...

Vue监听器watch的基本用法

文章目录 1. 作用2. 格式3. 示例3.1 value 值为字符串3.2 value 值为函数3.3 value 值为对象 4. 与计算属性对比 1. 作用 监视数据变化&#xff0c;执行一些业务逻辑或异步操作。 2. 格式 监听器 watch 内部以 key &#xff1a;value 的形式定义&#xff0c;key 是 data 中的…...

MySQL UPDATE JOIN 根据一张表或多表来更新另一张表的数据

当使用MySQL时&#xff0c;经常需要根据一张表或多张表的数据来更新另一张表的数据。这种情况下&#xff0c;我们可以使用UPDATE语句结合JOIN操作来实现这一需求。本文将介绍MySQL中使用UPDATE JOIN的技术。 什么是UPDATE JOIN UPDATE JOIN是MySQL中一种结合UPDATE语句和JOIN…...

JS实现继承的方式ES6版

上一篇&#xff1a;JS实现继承的方式原生版 ES6的继承 主要是依赖extends关键字来实现继承&#xff0c;且继承的效果类似于寄生组合继承。 class Parent() { }class Child extends Parent {constructor(x, y, color) {super(x, y);this.color color;} }子类必须在construct…...

elementui 左侧或水平导航菜单栏与main区域联动

系列文章目录 一、elementui 导航菜单栏和Breadcrumb 面包屑关联 二、elementui 左侧导航菜单栏与main区域联动 三、elementui 中设置图片的高度并支持PC和手机自适应 四、elementui 实现一个固定位置的Pagination&#xff08;分页&#xff09;组件 文章目录 系列文章目录…...

YUNBEE云贝-技术分享:PostgreSQL分区表

引言 PostgreSQL作为一款高度可扩展的企业级关系型数据库管理系统&#xff0c;其内置的分区表功能在处理大规模数据场景中扮演着重要角色。本文将深入探讨PostgreSQL分区表的实现逻辑、详细实验过程&#xff0c;并辅以分区表相关的视图查询、分区表维护及优化案例&#xff0c;…...

5.2 通用代码,数组求和,拷贝数组,si配合di翻转数组

5.2 通用代码&#xff0c;数组求和&#xff0c;拷贝数组&#xff0c;si配合di翻转数组 1. 通用代码 通用代码类似于一个用汇编语言写程序的一个框架&#xff0c;也类似于c语言的头文件编写 assume cs:code,ds:data,ss:stack data segmentdata endsstack segmentstack endsco…...

Oracle23免费版简易安装攻略

installation-guide 1 安装 root用户下 wget https://yum.oracle.com/repo/OracleLinux/OL8/developer/x86_64/getPackage/oracle-database-preinstall-23c-1.0-1.el8.x86_64.rpm wget https://download.oracle.com/otn-pub/otn_software/db-free/oracle-database-free-23c-1…...

《论文阅读》一种基于反事实推理的会话情绪检测无训练去偏框架 EMNLP 2023

《论文阅读》一种基于反事实推理的会话情绪检测无训练去偏框架 EMNLP 2023 前言简介相关工作模型构架Basic ClassificationBias ExtractionUnbiased Inference实验结果前言 亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~ 无抄袭,无复制,纯手工敲击键盘~ 今天…...

基于springboot+vue的健身房管理预约管理系统

...

【编译lombok问题】已解决:编译突然找不到符号问题-get/set找不到符号

一、场景&#xff1a;编译突然找不到符号 报错信息&#xff1a; 找不到符号 符号&#xff1a;方法getName() 二、原因&#xff1a; 没有使用lombok支持的编译器 三、解决方法&#xff1a; 打开File-Settings&#xff0c;按以下步骤进行设置&#xff1b; 修改&#xff1a;-Djp…...

第四篇:3.3 无效流量(Invalid traffic) - IAB/MRC及《增强现实广告效果测量指南1.0》

翻译计划 第一篇概述—IAB与MRC及《增强现实广告效果测量指南》之目录、适用范围及术语第二篇广告效果测量定义和其他矩阵之- 3.1 广告印象&#xff08;AD Impression&#xff09;第三篇广告效果测量定义和其他矩阵之- 3.2 可见性 &#xff08;Viewability&#xff09;第四篇广…...

PyTorch示例——使用Transformer写古诗

文章目录 PyTorch示例——使用Transformer写古诗1. 前言2. 版本信息3. 导包4. 数据与预处理数据下载先看一下原始数据开始处理数据&#xff0c;过滤掉异常数据定义 词典编码器 Tokenizer定义数据集类 MyDataset测试一下MyDataset、Tokenizer、DataLoader 5. 构建模型位置编码器…...

vue 视频添加水印

1.需求背景 其实腾讯云点播的api也支持视频水印&#xff0c;但是只有单个水印&#xff0c;大概效果是这样子的&#xff0c;不满足我们的需求&#xff0c;我们的需求是需要视频中都是水印。 腾讯云点播水印 项目需求的水印&#xff08;主要是防录屏,最后的实现效果是这样&…...

Web Animations API 动画

Element.animate() dom.animate动画可以避免污染dom原有的css动画 参考资料 Element.animate() - Web API 接口参考 | MDN Element: getAnimations() method - Web APIs | MDN .tunnel{width:200px;height:200px;background-color:#38f;}<div class"tunnel" …...

【大数据存储】实验五:Mapreduce

实验Mapreduce实例——排序&#xff08;补充程序&#xff09; 实验环境 Linux Ubuntu 16.04 jdk-8u191-linux-x64 hadoop-3.0.0 hadoop-eclipse-plugin-2.7.3.jar eclipse-java-juno-SR2-linux-gtk-x86_64 实验内容 在电商网站上&#xff0c;当我们进入某电商页面里浏览…...

日志服务 HarmonyOS NEXT 日志采集最佳实践

作者&#xff1a;高玉龙&#xff08;元泊&#xff09; 背景信息 随着数字化新时代的全面展开以及 5G 与物联网&#xff08;IoT&#xff09;技术的迅速普及&#xff0c;操作系统正面临前所未有的变革需求。在这个背景下&#xff0c;华为公司自主研发的鸿蒙操作系统&#xff08…...

Educational Codeforces Round 133 (Rated for Div. 2) (C dp D前缀和优化倍数关系dp)

A&#xff1a;能用3肯定用三&#xff0c;然后分类讨论即可 #include<bits/stdc.h> using namespace std; const int N 2e510,M2*N,mod998244353; #define int long long typedef long long LL; typedef pair<int, int> PII; typedef unsigned long long ULL; usi…...

【讲解下如何Stable Diffusion本地部署】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

wps斜线表头并分别打字教程

wps斜线表头怎么做并分别打字&#xff1a; 1、首先选中我们想要设置的表头。 2、接着右键选中它&#xff0c;点击“设置单元格格式” 3、然后点击上方“边框”选项卡。 4、随后选择图示的斜线&#xff0c;点击“确定” 5、设置完成后&#xff0c;我们只要在其中打字就可以在斜…...

2024第八届全国青少年无人机大赛暨中国航空航天科普展览会

2024第八届全国青少年无人机大赛暨中国航空航天科普展览会 邀请函 主办单位&#xff1a; 中国航空学会 重庆市南岸区人民政府 招商执行单位&#xff1a; 重庆港华展览有限公司 为更好的培养空航天产业人才&#xff0c;汇聚航空教育产业创新科技&#xff0c;丰富和完善航…...

fastadmin学习08-查询数据渲染到前端

index.php查询&#xff0c;这个是前台的index.php public function index() {$slideImgs Db::name("slideimg")->where("status",,normal)->limit(5)->order(sort,desc)->select();$productList Db::name("product")->where(…...

实验报告答案

基本任务&#xff08;必做&#xff09; 先用普通用户&#xff08;自己的姓名拼音&#xff09;登录再操作 编程有代码截图和执行过程结果截图 代写获取&#xff1a; https://laowangall.oss-cn-beijing.aliyuncs.com/studentall.pdf 1. Linux的Shell编程 &#xff08;1&am…...

PDF编辑和格式转换工具 Cisdem PDFMaster for Mac

Cisdem PDFMaster for Mac是一款功能强大的PDF编辑和格式转换工具。它为用户提供了直观且易于使用的界面&#xff0c;使常用功能触手可及&#xff0c;从而帮助用户轻松管理、编辑和转换PDF文件。 软件下载&#xff1a;Cisdem PDFMaster for Mac v6.0.0激活版下载 作为一款完整的…...

E-魔法猫咪(遇到过的题,做个笔记)

题解&#xff1a; 来自学长们思路&#xff1a; 其中一种正解是写单调队列。限制队列内的数单调递增&#xff0c;方法为每当新来的数据比当前队尾数据小时队 尾出列&#xff0c;直到能够插入当前值&#xff0c;这保证了队头永远是最小值。因此总体思路是队尾不断插入新值的同时 …...

keil创建工程 芯源半导体CW32F003E4P7

提前下载keil 安装步骤 1、下载CW32F003固件库 芯源半导体官网下载固件库 下载好后右键解压 CW32F003_StandardPeripheralLib_V1.5\IdeSupport\MDK 进入MDK文件夹 双击WHXY.CW32F003_DFP.1.0.4.pack安装固件库 点击next然后finish安装结束 keil创建工程 点击new uVision P…...

学习鸿蒙基础(12)

目录 一、网络json-server配置 &#xff08;1&#xff09;然后输入&#xff1a; &#xff08;2&#xff09;显示下载成功。但是输入json-server -v的时候。报错。 &#xff08;3&#xff09;此时卸载默认的json-server &#xff08;4&#xff09;安装和nodejs匹配版本的js…...

HTML5和CSS3笔记

一&#xff1a;网页结构(html)&#xff1a; 1.1&#xff1a;页面结构&#xff1a; 1.2&#xff1a;标签类型&#xff1a; 1.2.1&#xff1a;块标签&#xff1a; 1.2.2&#xff1a;行内标签&#xff1a; 1.2.3&#xff1a;行内块标签&#xff1a; 1.2.4&#xff1a;块标签与行…...

MHA高可用-解决MySQL主从复制的单点问题

目录 一、MHA的介绍 1&#xff0e;什么是 MHA 2&#xff0e;MHA 的组成 2.1 MHA Node&#xff08;数据节点&#xff09; 2.2 MHA Manager&#xff08;管理节点&#xff09; 3&#xff0e;MHA 的特点 4. MHA工作原理总结如下&#xff1a; 二、搭建 MySQL MHA 实验环境 …...

wordpress 自动分享/宁波seo运营推广平台排名

一、 Hibernate介绍 Hibernate是基于对象/关系映射&#xff08;ORM&#xff0c;Object/Relational Mapping&#xff09;的一个解决方案。ORM方案的思想是将对象模型表示的对象映射到关系型数据库中&#xff0c;或者反之。Hibernate目前是ORM思想在Java中最成功、最强大的实现。…...

网页设计师培训网校/网站seo分析工具

拷贝我们的vector类型具有如下形式&#xff1a;class vector {private:int sz;double * elem; public:vector(int s):sz(s),elem(new double[s]){}~vector() {delete [] elem;} };让我们试图拷贝其中的一个向量&#xff1a;void f(int n) {vector v(3);v.set(2, 2.2);vector v2…...

苏州服务器托管哪家好/站长工具的使用seo综合查询排名

01 下载 macOS 系统安装程序的方法 本文来自: https://discussionschinese.apple.com/docs/DOC-250004259 简介 Mac 用户时不时会需要下载 macOS 的安装程序&#xff0c;目的不同&#xff0c;或者升级或者降级&#xff0c;或者研究或者收藏。为了方便不同用户&#xff0c;除…...

网站建设的一般过程包括哪些方面/自媒体账号申请

88. 合并两个有序数组 - 力扣&#xff08;LeetCode&#xff09; 就是归并排序的merge嘛&#xff0c;借助一个辅助数组就可以了。 class Solution { public:void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {if(n 0) return;vector&l…...

营销型网站的三元素/seo关键词优化方法

将以下代码复制粘贴到txt文件中&#xff0c;另存为bat格式&#xff0c;并将文件编码格式修改为ANSI&#xff0c;跟要处理的文件放一个文件夹内运行。 代码中制定的是删除1,2行&#xff0c;可根据需求自行修改。 echo off rem 根据指定的行号范围删除多个txt文件里的连续多行内…...

wordpress单页面主题/南京seo优化

每一间店铺都应该拥有专属的品牌形象。 商家可以根据内容类型的定位&#xff0c;通过广告位、富文本内容、店铺信息等组件进行对店铺品牌形象的塑造&#xff0c;搭配底部导航栏的自定义配置&#xff0c;以及店铺的主题色彩风格&#xff0c;可更好的提升用户体验&#xff0c;营…...