Paddle实现人脸对比
人脸对比
人脸对比,顾名思义,就是对比两个人脸的相似度。本文将用Paddle实现这一功能。
PS:作者肝了整整3天才稍微搞明白实现方法
数据集准备
这里使用百度AI Studio的开源数据集:
人脸数据_数据集-飞桨AI Studio星河社区 (baidu.com)
这个数据集提供了500个人的人脸各100张,比较适合我们的项目。
根据这个数据集,很容易写出数据集类,文件名为face_dataset.py:
import numpy as np
from PIL import Image
import paddle
from random import shuffleclass FaceData(paddle.io.Dataset):def __init__(self, mode, num):super().__init__()# 训练集/测试集file = 'facecap/train_list.txt' if mode == 'train' else 'facecap/test_list.txt'self.imgs1 = []self.imgs2 = []self.labels = []# 控制相同人脸个数与不同人脸个数各占一半_1_count = 0with open(file) as f:# 读取数据集文件信息数据并洗牌lines = f.readlines()shuffle(lines)lines = lines[:num]print('read down')# 加载数据集for line1 in lines:line1 = line1.strip()img1, label1 = line1.split(' ')pil_img1 = Image.open(f'facecap\\{img1}').convert('RGB').resize((96, 96))for line2 in lines:line2 = line2.strip()img2, label2 = line2.split(' ')if label1 == label2:_1_count += 1pil_img2 = Image.open(f'facecap\\{img2}').convert('RGB').resize((96, 96))self.imgs1.append(np.array(pil_img1).transpose((2, 0, 1)) / 255.0)self.imgs2.append(np.array(pil_img2).transpose((2, 0, 1)) / 255.0)self.labels.append(1)elif _1_count > 0:_1_count -= 1pil_img2 = Image.open(f'facecap\\{img2}').convert('RGB').resize((96, 96))self.imgs1.append(np.array(pil_img1).transpose((2, 0, 1)) / 255.0)self.imgs2.append(np.array(pil_img2).transpose((2, 0, 1)) / 255.0)self.labels.append(0)self.imgs1 = np.array(self.imgs1, dtype=np.float32)self.imgs2 = np.array(self.imgs2, dtype=np.float32)self.labels = np.array(self.labels, dtype=np.float32)print('load down')def __getitem__(self, idx):return self.imgs1[idx], self.imgs2[idx], self.labels[idx]def __len__(self):return len(self.labels)
需要注意的是,PIL的图片维度与paddle CNN的维度不一样,需要使用transpose改变
当然,使用这个数据集类读取数据是非常漫长的,因此我们创建了一个face_create_dataset.py,创建数据集对象并保存到本地:
from face_dataset import FaceData
import pickletrain_dataset = FaceData(mode='train', num=2000)
test_dataset = FaceData(mode='test', num=200)pickle.dump(train_dataset, open('./database/train.data', 'wb'), protocol=4)
pickle.dump(test_dataset, open('./database/test.data', 'wb'), protocol=4)
这里我们使用pickle保存对象,注意这里要指定protocol=4,以保证可以存储超过4G的大文件
最后,这个脚本会在本地的database文件夹下生成两个data文件,使用时只需要加载即可
孪生网络
既然要输入两张图片,就自然需要使用两张卷积网络,分别处理两张图片。但是人脸对比与输入顺序无关,这就要求两个网络对于同一张图片的输出是相同的,也就是这两个网络是相同的。即共享权重的网络。因此我们可以定义网络如下:
class FaceNet(paddle.nn.Layer):def __init__(self):super().__init__()# 共享权重的cnn网络self.cnn = paddle.nn.Sequential(paddle.nn.Conv2D(3, 16, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(16, 32, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(32, 64, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(64, 128, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Flatten(),paddle.nn.Linear(4608, 5))def forward(self, face1, face2):# 前向传播:使用cnn网络分别输出两个结果并返回n1r = self.cnn(face1)n2r = self.cnn(face2)return n1r, n2r
这个网络还需要有特殊的损失函数。这个损失函数将会使相同的人脸距离相近,不同的人脸距离更远。我们采用勾股定理计算距离,这样的距离也叫欧氏距离。
因此,对于一个在n维空间上的两个点(x1, x2, x3, ..., xn), (y1, y2, y3, ..., yn),就有:
因此,如果人脸相同,损失函数将会输出的损失值是:
这样的话,如果距离过远,损失值就会偏大 ,从而使输出更接近0
如果人脸不同,输出的损失值是:
这样的话,只有当距离比设定阈值远时,损失才为0.
另外,损失最好使用乘方而不是绝对值,这样的话就可以增加远离时的梯度。
我们定义其损失函数如下:
# 损失函数定义
class FaceLoss(paddle.nn.Layer):def __init__(self, margin=(512 ** 0.5)):super(FaceLoss, self).__init__()self.margin = margindef forward(self, output1, output2, label):# 计算欧式距离(勾股定理)euclidean_distance = paddle.norm(output1 - output2, axis=1)# 损失值# 在数据集中,1为相同,0为不同。但是输出要求相似的图片距离更近loss_contrastive = label * paddle.square(euclidean_distance) + \(1 - label) * paddle.square(paddle.maximum(self.margin - euclidean_distance, paddle.to_tensor(0.0)))# 损失函数应对同一批次取一个损失值return paddle.mean(loss_contrastive)
在paddle中,可以使用paddle.norm计算距离。axis=1表示只对第1维度计算距离,因为第0维度是数据批次。
在数据集中,我们定义1为相同,0为不同。根据我们之前的分析,很容易算出损失值的公式。
接下来就可以把这两个整合在一个py文件中,起名face_layers.py:
import paddleclass FaceNet(paddle.nn.Layer):def __init__(self):super().__init__()# 共享权重的cnn网络self.cnn = paddle.nn.Sequential(paddle.nn.Conv2D(3, 16, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(16, 32, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(32, 64, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(64, 128, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Flatten(),paddle.nn.Linear(4608, 5))def forward(self, face1, face2):# 前向传播:使用cnn网络分别输出两个结果并返回n1r = self.cnn(face1)n2r = self.cnn(face2)return n1r, n2r# 损失函数定义
class FaceLoss(paddle.nn.Layer):def __init__(self, margin=(512 ** 0.5)):super(FaceLoss, self).__init__()self.margin = margindef forward(self, output1, output2, label):# 计算欧式距离(勾股定理)euclidean_distance = paddle.norm(output1 - output2, axis=1)# 损失值# 在数据集中,1为相同,0为不同。但是输出要求相似的图片距离更近loss_contrastive = label * paddle.square(euclidean_distance) + \(1 - label) * paddle.square(paddle.maximum(self.margin - euclidean_distance, paddle.to_tensor(0.0)))# 损失函数应对同一批次取一个损失值return paddle.mean(loss_contrastive)
训练
接下来我们需要编写训练脚本face.py:
import paddle
from face_dataset import FaceData
from face_layers import FaceNet, FaceLoss
import pickle# 加载数据集
train_dataset = pickle.load(open('./database/train.data', 'rb'))
test_dataset = pickle.load(open('./database/test.data', 'rb'))# 输出数据集信息
print(f'加载数据完毕,训练集数据个数:{len(train_dataset)};测试集数据个数:{len(test_dataset)}')count = 0
for context1, context2, label in train_dataset:if label == 1:count += 1print(f'训练集相同人脸个数{count}')count = 0
for context1, context2, label in test_dataset:if label == 1:count += 1print(f'测试集相同人脸个数{count}')# 指定设备
paddle.device.set_device('gpu')# 创建模型
model = paddle.Model(FaceNet())# 打印模型信息
print(model.summary(((1, 3, 96, 96), (1, 3, 96, 96))))# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=0.00001),FaceLoss())# 模型训练
model.fit(train_dataset, epochs=50, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)# 保存模型
model.save('./output/face-compare')
这里需要注意,我们需要使用FaceLoss作为损失函数
训练完毕后,训练数据将被存储在本地的output文件夹下,使用时加载即可
接下来我们可以编写face_use.py使用这个模型:
import paddle
from face_dataset import FaceData
from face_layers import FaceNet
from PIL import Image
import numpy as np# 加载模型
model = paddle.Model(FaceNet())
model.load('./output/face-compare')print('加载模型完毕')# 打开图片
pil_img1 = Image.open(f'facecap\\003\\30.jpg').convert('RGB').resize((96, 96))
pil_img2 = Image.open(f'facecap\\003\\27.jpg').convert('RGB').resize((96, 96))# 转np数组
np_img1 = np.array(pil_img1, dtype=np.float32).transpose((2, 0, 1)) / 255.0
np_img2 = np.array(pil_img2, dtype=np.float32).transpose((2, 0, 1)) / 255.0# 预测
pred = model.predict_batch((np.array([np_img1], dtype=np.float32), np.array([np_img2], dtype=np.float32)))# 计算距离
euclidean_distance = paddle.norm(paddle.to_tensor([pred[0]]) - paddle.to_tensor([pred[1]]))
print(euclidean_distance.numpy())
这里只以两张相同人的人脸的图片做测试,最后输出:
加载模型完毕
[0.1978856]
改用两张不同人的人脸做测试,最后输出:
加载模型完毕
[1.1059165]
可以看到,这个模型的效果还不错。但是经过我的多次测试,发现这个模型还有一定的提升空间。这需要更大的数据集、更深的模型和更多的训练次数
总结
我们使用孪生网络技术,成功实现了人脸对比模型,并有一定的准确性,可以应用于人脸比对等场景。但是,由于数据集、模型和训练次数有限,还难以实现更准确的人脸对比
相关文章:
Paddle实现人脸对比
人脸对比 人脸对比,顾名思义,就是对比两个人脸的相似度。本文将用Paddle实现这一功能。 PS:作者肝了整整3天才稍微搞明白实现方法 数据集准备 这里使用百度AI Studio的开源数据集: 人脸数据_数据集-飞桨AI Studio星河社区 (b…...
挖一挖:PostgreSQL Java里的double类型存储到varchar精度丢失问题
前言 大概故事是这样的,PostgreSQL数据库,表结构: create table t1(a varchar);然后使用标准的Java jdbc去插入数据,其基本代码如下: import java.sql.*; public class PgDoubleTest {public static void main(Stri…...
函数对象基本使用
一、函数对象概念 1.重载函数调用操作符的类,其对象常称为函数对象 2.函数对象使用重载的()时,行为类似函数调用,也叫仿函数 本质: 函数对象(仿函数)是一个类,不是一个函数 二、函数对象使用 特点: 函…...
浅谈HTTP
浅谈HTTP 要通过netty实现HTTP服务器(或者客户端),首先你要了解HTTP协议。 HTTP在客户端 - 服务器计算模型中用作请求 - 响应协议。 例如,web浏览器可以是客户端,并且在托管网站的计算机上运行的应用程序可以是服务器。 客户端向服务器提交…...
HarmonyOS NEXT应用开发之@Provide装饰器和\@Consume装饰器:与后代组件双向同步
Provide和Consume,应用于与后代组件的双向数据同步,应用于状态数据在多个层级之间传递的场景。不同于上文提到的父子组件之间通过命名参数机制传递,Provide和Consume摆脱参数传递机制的束缚,实现跨层级传递。 其中Provide装饰的变…...
Docker 安装 | 部署MySQL 8.x 初始设置
1、准备工作 如果不想看前面的废话请直接右边目录跳到 运行容器 处 默认你已经有 docker 环境。 Windows 推荐 Docker Desktop (下载地址)并基于 WSL2 运行 Docker 环境 mac 推荐 Orbstack (下载地址)(这个很节省资源&…...
linux三剑客之流编辑器sed
sed(stream editor)是Linux和Unix系统中一个非常强大的文本处理工具。它主要用于对文本数据进行过滤和转换。sed 可以在不打开文件的情况下,直接对输入流进行操作,并且可以将结果输出到标准输出或文件。 基本语法: s…...
【Android Studio】上位机-安卓系统手机-蓝牙调试助手
【Android Studio】上位机-安卓系统手机-蓝牙调试助手 文章目录 前言AS官网一、手机配置二、移植工程三、配置四、BUG五、Java语言总结 前言 提示:以下是本篇文章正文内容,下面案例可供参考 AS官网 AS官网 一、手机配置 Android Studio 下真机调试 …...
怎样把学浪购买的课程下载下来
如何把学浪已购买的课程下载下来?这里就教大家一个方法,利用一个工具轻轻松松把视频下载下来 这个工具我打包成压缩包了,有需要的自己取一下 链接:https://pan.baidu.com/s/1y7vcqILToULrYApxfEzj_Q?pwdkqvj 提取码:kqvj --来自百度网盘超级会员V1…...
SD-WAN如何解决更有性价比地跨境网络问题
云桥通SD-WAN利用智能路由和负载均衡技术,优化数据传输路径,提高网络性能和可靠性。这意味着数据在跨国传输时可以更快到达目的地,减少延迟和丢包率。跨境SD-WAN提高了网络连接速度和质量,使用户能够更快地访问跨国业务所需的资源…...
第15章 File类与IO流
一 java.io.File类的使用 1.1 概述 File类及本章下的各种流,都定义在java.io包下。一个File对象代表硬盘或网络中可能存在的一个文件或者文件目录(俗称文件夹),与平台无关。(体会万事万物皆对象)File 能新…...
C语言基础语法-教案16(从小白到劝退之结构体初阶)
最近给大家争取到一个 深夜福利 保证你在深夜手机刷到 嘎嘎香~ 那就是 大流量卡 缺点:月租太便宜 185GB~ 100分钟通话时长~ 长期套餐~ 畅想自由的气息 流量自由的同时还拥有超长通话,而且免费领取。 名额有限,咱们废话不多说直接上…...
Linux:ip和ip协议的初步认识
文章目录 ip协议基本认识ip协议的报头网段划分ip的类型划分 ip协议基本认识 前面对于TCP的内容已经基本结束了,那么这也就意味着在传输层也已经结束了,那么下一步要进入的是的是网络层,网络层中也有很多种协议,这里主要进行解析的…...
Android12 简单的共享内存驱动实现 参考Ashmem
Android12 共享内存驱动实现 SOC:RK3568 system:Android12 概述: 1. 概述 Ashmem(Anonymous Shared Memory,Android 匿名共享内存),它基于 mmap 系统调用,可以让不同进程将同一段…...
物理安全和逻辑安全在信息安全中的重要作用
在信息时代,信息安全已经成为企业和个人不可或缺的重要组成部分。物理安全和逻辑安全作为信息安全的两大支柱,发挥着至关重要的作用。 什么是物理安全和逻辑安全? 物理安全是指通过技术手段,对计算机设备、网络设备、数据中心等…...
每日一题 --- 滑动窗口最大值[力扣][Go]
滑动窗口最大值 题目:239. 滑动窗口最大值 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1࿱…...
TensorBoard可视化+Confustion Matrix Drawing
for later~ 代码阅读 1. 加载trainset import argparse import logging import os import numpy as npimport torch from torch import distributed from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriterfrom backbones import get_…...
012——LED模块驱动开发(基于I.MX6uLL)
目录 一、 硬件原理图 二、 驱动程序 三、 应用程序 四、 Makefile 五、操作 一、 硬件原理图 又是非常经典的点灯环节 ,每次学新语言第一步都是hello world,拿到新板子或者学习新的操作系统,第一步就是点灯。 LED 的驱动方式࿰…...
基于springboot实现房屋租赁管理系统项目【项目源码+论文说明】计算机毕业设计
基于springboot实现房屋租赁系统演示 摘要 房屋是人类生活栖息的重要场所,随着城市中的流动人口的增多,人们对房屋租赁需求越来越高,为满足用户查询房屋、预约看房、房屋租赁的需求,特开发了本基于Spring Boot的房屋租赁系统。 …...
168.乐理基础-中古调式概述
如果到这五线谱还没记住还不认识的话去看102.五线谱-高音谱号与103.五线谱-低音谱号这两个里,这里面有五线谱对应的音名,对比着看 如果不认识调号去看112.五线谱的调号(一)、113.五线谱的调号(二)、114.快…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
