Paddle实现人脸对比
人脸对比
人脸对比,顾名思义,就是对比两个人脸的相似度。本文将用Paddle实现这一功能。
PS:作者肝了整整3天才稍微搞明白实现方法
数据集准备
这里使用百度AI Studio的开源数据集:
人脸数据_数据集-飞桨AI Studio星河社区 (baidu.com)
这个数据集提供了500个人的人脸各100张,比较适合我们的项目。
根据这个数据集,很容易写出数据集类,文件名为face_dataset.py:
import numpy as np
from PIL import Image
import paddle
from random import shuffleclass FaceData(paddle.io.Dataset):def __init__(self, mode, num):super().__init__()# 训练集/测试集file = 'facecap/train_list.txt' if mode == 'train' else 'facecap/test_list.txt'self.imgs1 = []self.imgs2 = []self.labels = []# 控制相同人脸个数与不同人脸个数各占一半_1_count = 0with open(file) as f:# 读取数据集文件信息数据并洗牌lines = f.readlines()shuffle(lines)lines = lines[:num]print('read down')# 加载数据集for line1 in lines:line1 = line1.strip()img1, label1 = line1.split(' ')pil_img1 = Image.open(f'facecap\\{img1}').convert('RGB').resize((96, 96))for line2 in lines:line2 = line2.strip()img2, label2 = line2.split(' ')if label1 == label2:_1_count += 1pil_img2 = Image.open(f'facecap\\{img2}').convert('RGB').resize((96, 96))self.imgs1.append(np.array(pil_img1).transpose((2, 0, 1)) / 255.0)self.imgs2.append(np.array(pil_img2).transpose((2, 0, 1)) / 255.0)self.labels.append(1)elif _1_count > 0:_1_count -= 1pil_img2 = Image.open(f'facecap\\{img2}').convert('RGB').resize((96, 96))self.imgs1.append(np.array(pil_img1).transpose((2, 0, 1)) / 255.0)self.imgs2.append(np.array(pil_img2).transpose((2, 0, 1)) / 255.0)self.labels.append(0)self.imgs1 = np.array(self.imgs1, dtype=np.float32)self.imgs2 = np.array(self.imgs2, dtype=np.float32)self.labels = np.array(self.labels, dtype=np.float32)print('load down')def __getitem__(self, idx):return self.imgs1[idx], self.imgs2[idx], self.labels[idx]def __len__(self):return len(self.labels)
需要注意的是,PIL的图片维度与paddle CNN的维度不一样,需要使用transpose改变
当然,使用这个数据集类读取数据是非常漫长的,因此我们创建了一个face_create_dataset.py,创建数据集对象并保存到本地:
from face_dataset import FaceData
import pickletrain_dataset = FaceData(mode='train', num=2000)
test_dataset = FaceData(mode='test', num=200)pickle.dump(train_dataset, open('./database/train.data', 'wb'), protocol=4)
pickle.dump(test_dataset, open('./database/test.data', 'wb'), protocol=4)
这里我们使用pickle保存对象,注意这里要指定protocol=4,以保证可以存储超过4G的大文件
最后,这个脚本会在本地的database文件夹下生成两个data文件,使用时只需要加载即可
孪生网络
既然要输入两张图片,就自然需要使用两张卷积网络,分别处理两张图片。但是人脸对比与输入顺序无关,这就要求两个网络对于同一张图片的输出是相同的,也就是这两个网络是相同的。即共享权重的网络。因此我们可以定义网络如下:
class FaceNet(paddle.nn.Layer):def __init__(self):super().__init__()# 共享权重的cnn网络self.cnn = paddle.nn.Sequential(paddle.nn.Conv2D(3, 16, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(16, 32, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(32, 64, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(64, 128, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Flatten(),paddle.nn.Linear(4608, 5))def forward(self, face1, face2):# 前向传播:使用cnn网络分别输出两个结果并返回n1r = self.cnn(face1)n2r = self.cnn(face2)return n1r, n2r
这个网络还需要有特殊的损失函数。这个损失函数将会使相同的人脸距离相近,不同的人脸距离更远。我们采用勾股定理计算距离,这样的距离也叫欧氏距离。
因此,对于一个在n维空间上的两个点(x1, x2, x3, ..., xn), (y1, y2, y3, ..., yn),就有:
因此,如果人脸相同,损失函数将会输出的损失值是:
这样的话,如果距离过远,损失值就会偏大 ,从而使输出更接近0
如果人脸不同,输出的损失值是:
这样的话,只有当距离比设定阈值远时,损失才为0.
另外,损失最好使用乘方而不是绝对值,这样的话就可以增加远离时的梯度。
我们定义其损失函数如下:
# 损失函数定义
class FaceLoss(paddle.nn.Layer):def __init__(self, margin=(512 ** 0.5)):super(FaceLoss, self).__init__()self.margin = margindef forward(self, output1, output2, label):# 计算欧式距离(勾股定理)euclidean_distance = paddle.norm(output1 - output2, axis=1)# 损失值# 在数据集中,1为相同,0为不同。但是输出要求相似的图片距离更近loss_contrastive = label * paddle.square(euclidean_distance) + \(1 - label) * paddle.square(paddle.maximum(self.margin - euclidean_distance, paddle.to_tensor(0.0)))# 损失函数应对同一批次取一个损失值return paddle.mean(loss_contrastive)
在paddle中,可以使用paddle.norm计算距离。axis=1表示只对第1维度计算距离,因为第0维度是数据批次。
在数据集中,我们定义1为相同,0为不同。根据我们之前的分析,很容易算出损失值的公式。
接下来就可以把这两个整合在一个py文件中,起名face_layers.py:
import paddleclass FaceNet(paddle.nn.Layer):def __init__(self):super().__init__()# 共享权重的cnn网络self.cnn = paddle.nn.Sequential(paddle.nn.Conv2D(3, 16, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(16, 32, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(32, 64, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Conv2D(64, 128, 3, padding=1),paddle.nn.ReLU(),paddle.nn.MaxPool2D(2, 2),paddle.nn.Flatten(),paddle.nn.Linear(4608, 5))def forward(self, face1, face2):# 前向传播:使用cnn网络分别输出两个结果并返回n1r = self.cnn(face1)n2r = self.cnn(face2)return n1r, n2r# 损失函数定义
class FaceLoss(paddle.nn.Layer):def __init__(self, margin=(512 ** 0.5)):super(FaceLoss, self).__init__()self.margin = margindef forward(self, output1, output2, label):# 计算欧式距离(勾股定理)euclidean_distance = paddle.norm(output1 - output2, axis=1)# 损失值# 在数据集中,1为相同,0为不同。但是输出要求相似的图片距离更近loss_contrastive = label * paddle.square(euclidean_distance) + \(1 - label) * paddle.square(paddle.maximum(self.margin - euclidean_distance, paddle.to_tensor(0.0)))# 损失函数应对同一批次取一个损失值return paddle.mean(loss_contrastive)
训练
接下来我们需要编写训练脚本face.py:
import paddle
from face_dataset import FaceData
from face_layers import FaceNet, FaceLoss
import pickle# 加载数据集
train_dataset = pickle.load(open('./database/train.data', 'rb'))
test_dataset = pickle.load(open('./database/test.data', 'rb'))# 输出数据集信息
print(f'加载数据完毕,训练集数据个数:{len(train_dataset)};测试集数据个数:{len(test_dataset)}')count = 0
for context1, context2, label in train_dataset:if label == 1:count += 1print(f'训练集相同人脸个数{count}')count = 0
for context1, context2, label in test_dataset:if label == 1:count += 1print(f'测试集相同人脸个数{count}')# 指定设备
paddle.device.set_device('gpu')# 创建模型
model = paddle.Model(FaceNet())# 打印模型信息
print(model.summary(((1, 3, 96, 96), (1, 3, 96, 96))))# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=0.00001),FaceLoss())# 模型训练
model.fit(train_dataset, epochs=50, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)# 保存模型
model.save('./output/face-compare')
这里需要注意,我们需要使用FaceLoss作为损失函数
训练完毕后,训练数据将被存储在本地的output文件夹下,使用时加载即可
接下来我们可以编写face_use.py使用这个模型:
import paddle
from face_dataset import FaceData
from face_layers import FaceNet
from PIL import Image
import numpy as np# 加载模型
model = paddle.Model(FaceNet())
model.load('./output/face-compare')print('加载模型完毕')# 打开图片
pil_img1 = Image.open(f'facecap\\003\\30.jpg').convert('RGB').resize((96, 96))
pil_img2 = Image.open(f'facecap\\003\\27.jpg').convert('RGB').resize((96, 96))# 转np数组
np_img1 = np.array(pil_img1, dtype=np.float32).transpose((2, 0, 1)) / 255.0
np_img2 = np.array(pil_img2, dtype=np.float32).transpose((2, 0, 1)) / 255.0# 预测
pred = model.predict_batch((np.array([np_img1], dtype=np.float32), np.array([np_img2], dtype=np.float32)))# 计算距离
euclidean_distance = paddle.norm(paddle.to_tensor([pred[0]]) - paddle.to_tensor([pred[1]]))
print(euclidean_distance.numpy())
这里只以两张相同人的人脸的图片做测试,最后输出:
加载模型完毕
[0.1978856]
改用两张不同人的人脸做测试,最后输出:
加载模型完毕
[1.1059165]
可以看到,这个模型的效果还不错。但是经过我的多次测试,发现这个模型还有一定的提升空间。这需要更大的数据集、更深的模型和更多的训练次数
总结
我们使用孪生网络技术,成功实现了人脸对比模型,并有一定的准确性,可以应用于人脸比对等场景。但是,由于数据集、模型和训练次数有限,还难以实现更准确的人脸对比
相关文章:
Paddle实现人脸对比
人脸对比 人脸对比,顾名思义,就是对比两个人脸的相似度。本文将用Paddle实现这一功能。 PS:作者肝了整整3天才稍微搞明白实现方法 数据集准备 这里使用百度AI Studio的开源数据集: 人脸数据_数据集-飞桨AI Studio星河社区 (b…...
挖一挖:PostgreSQL Java里的double类型存储到varchar精度丢失问题
前言 大概故事是这样的,PostgreSQL数据库,表结构: create table t1(a varchar);然后使用标准的Java jdbc去插入数据,其基本代码如下: import java.sql.*; public class PgDoubleTest {public static void main(Stri…...
函数对象基本使用
一、函数对象概念 1.重载函数调用操作符的类,其对象常称为函数对象 2.函数对象使用重载的()时,行为类似函数调用,也叫仿函数 本质: 函数对象(仿函数)是一个类,不是一个函数 二、函数对象使用 特点: 函…...
浅谈HTTP
浅谈HTTP 要通过netty实现HTTP服务器(或者客户端),首先你要了解HTTP协议。 HTTP在客户端 - 服务器计算模型中用作请求 - 响应协议。 例如,web浏览器可以是客户端,并且在托管网站的计算机上运行的应用程序可以是服务器。 客户端向服务器提交…...
HarmonyOS NEXT应用开发之@Provide装饰器和\@Consume装饰器:与后代组件双向同步
Provide和Consume,应用于与后代组件的双向数据同步,应用于状态数据在多个层级之间传递的场景。不同于上文提到的父子组件之间通过命名参数机制传递,Provide和Consume摆脱参数传递机制的束缚,实现跨层级传递。 其中Provide装饰的变…...
Docker 安装 | 部署MySQL 8.x 初始设置
1、准备工作 如果不想看前面的废话请直接右边目录跳到 运行容器 处 默认你已经有 docker 环境。 Windows 推荐 Docker Desktop (下载地址)并基于 WSL2 运行 Docker 环境 mac 推荐 Orbstack (下载地址)(这个很节省资源&…...
linux三剑客之流编辑器sed
sed(stream editor)是Linux和Unix系统中一个非常强大的文本处理工具。它主要用于对文本数据进行过滤和转换。sed 可以在不打开文件的情况下,直接对输入流进行操作,并且可以将结果输出到标准输出或文件。 基本语法: s…...
【Android Studio】上位机-安卓系统手机-蓝牙调试助手
【Android Studio】上位机-安卓系统手机-蓝牙调试助手 文章目录 前言AS官网一、手机配置二、移植工程三、配置四、BUG五、Java语言总结 前言 提示:以下是本篇文章正文内容,下面案例可供参考 AS官网 AS官网 一、手机配置 Android Studio 下真机调试 …...
怎样把学浪购买的课程下载下来
如何把学浪已购买的课程下载下来?这里就教大家一个方法,利用一个工具轻轻松松把视频下载下来 这个工具我打包成压缩包了,有需要的自己取一下 链接:https://pan.baidu.com/s/1y7vcqILToULrYApxfEzj_Q?pwdkqvj 提取码:kqvj --来自百度网盘超级会员V1…...
SD-WAN如何解决更有性价比地跨境网络问题
云桥通SD-WAN利用智能路由和负载均衡技术,优化数据传输路径,提高网络性能和可靠性。这意味着数据在跨国传输时可以更快到达目的地,减少延迟和丢包率。跨境SD-WAN提高了网络连接速度和质量,使用户能够更快地访问跨国业务所需的资源…...
第15章 File类与IO流
一 java.io.File类的使用 1.1 概述 File类及本章下的各种流,都定义在java.io包下。一个File对象代表硬盘或网络中可能存在的一个文件或者文件目录(俗称文件夹),与平台无关。(体会万事万物皆对象)File 能新…...
C语言基础语法-教案16(从小白到劝退之结构体初阶)
最近给大家争取到一个 深夜福利 保证你在深夜手机刷到 嘎嘎香~ 那就是 大流量卡 缺点:月租太便宜 185GB~ 100分钟通话时长~ 长期套餐~ 畅想自由的气息 流量自由的同时还拥有超长通话,而且免费领取。 名额有限,咱们废话不多说直接上…...
Linux:ip和ip协议的初步认识
文章目录 ip协议基本认识ip协议的报头网段划分ip的类型划分 ip协议基本认识 前面对于TCP的内容已经基本结束了,那么这也就意味着在传输层也已经结束了,那么下一步要进入的是的是网络层,网络层中也有很多种协议,这里主要进行解析的…...
Android12 简单的共享内存驱动实现 参考Ashmem
Android12 共享内存驱动实现 SOC:RK3568 system:Android12 概述: 1. 概述 Ashmem(Anonymous Shared Memory,Android 匿名共享内存),它基于 mmap 系统调用,可以让不同进程将同一段…...
物理安全和逻辑安全在信息安全中的重要作用
在信息时代,信息安全已经成为企业和个人不可或缺的重要组成部分。物理安全和逻辑安全作为信息安全的两大支柱,发挥着至关重要的作用。 什么是物理安全和逻辑安全? 物理安全是指通过技术手段,对计算机设备、网络设备、数据中心等…...
每日一题 --- 滑动窗口最大值[力扣][Go]
滑动窗口最大值 题目:239. 滑动窗口最大值 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1࿱…...
TensorBoard可视化+Confustion Matrix Drawing
for later~ 代码阅读 1. 加载trainset import argparse import logging import os import numpy as npimport torch from torch import distributed from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriterfrom backbones import get_…...
012——LED模块驱动开发(基于I.MX6uLL)
目录 一、 硬件原理图 二、 驱动程序 三、 应用程序 四、 Makefile 五、操作 一、 硬件原理图 又是非常经典的点灯环节 ,每次学新语言第一步都是hello world,拿到新板子或者学习新的操作系统,第一步就是点灯。 LED 的驱动方式࿰…...
基于springboot实现房屋租赁管理系统项目【项目源码+论文说明】计算机毕业设计
基于springboot实现房屋租赁系统演示 摘要 房屋是人类生活栖息的重要场所,随着城市中的流动人口的增多,人们对房屋租赁需求越来越高,为满足用户查询房屋、预约看房、房屋租赁的需求,特开发了本基于Spring Boot的房屋租赁系统。 …...
168.乐理基础-中古调式概述
如果到这五线谱还没记住还不认识的话去看102.五线谱-高音谱号与103.五线谱-低音谱号这两个里,这里面有五线谱对应的音名,对比着看 如果不认识调号去看112.五线谱的调号(一)、113.五线谱的调号(二)、114.快…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...
