当前位置: 首页 > news >正文

数据结构和算法:十大排序

排序算法

排序算法用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用,因为有序数据通常能够被更高效地查找、分析和处理。

排序算法中的数据类型可以是整数、浮点数、字符或字符串等。排序的判断规则可根据需求设定,如数字大小、字符 ASCII 码顺序或自定义规则。
在这里插入图片描述

评价维度

运行效率: 期望排序算法的时间复杂度尽量低,且总体操作数量较少(时间复杂度中的常数项变小)。对于大数据量的情况,运行效率显得尤为重要。

就地性: 顾名思义,原地排序通过在原数组上直接操作实现排序,无须借助额外的辅助数组,从而节省内存。通常情况下,原地排序的数据搬运操作较少,运行速度也更快。

稳定性: 稳定排序在完成排序后,相等元素在数组中的相对顺序不发生改变。
稳定排序是多级排序场景的必要条件。

自适应性: 自适应排序的时间复杂度会受输入数据的影响,即最佳时间复杂度、最差时间复杂度、平均时间复杂度并不完全相等。
自适应性需要根据具体情况来评估。如果最差时间复杂度差于平均时间复杂度,说明排序算法在某些数据下性能可能劣化,因此被视为负面属性;而如果最佳时间复杂度优于平均时间复杂度,则被视为正面属性。

是否基于比较: 基于比较的排序依赖比较运算符(<、=、>)来判断元素的相对顺序,从而排序整个数
组,理论最优时间复杂度为 𝑂(𝑛 log 𝑛) 。而非比较排序不使用比较运算符,时间复杂度可达 𝑂(𝑛) ,但其通用性相对较差。

理想排序算法

运行快、原地、稳定、正向自适应、通用性好。显然,迄今为止尚未发现兼具以上所有特性的排序算法。因此,在选择排序算法时,需要根据具体的数据特点和问题需求来决定。

选择排序

选择排序(selection sort)的工作原理:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。

设数组的长度为 𝑛 ,选择排序的算法流程如图:
1.初始状态下,所有元素未排序,即未排序(索引)区间为 [0, 𝑛 − 1] 。
2.选取区间 [0, 𝑛 − 1] 中的最小元素,将其与索引 0 处的元素交换。完成后,数组前 1 个元素已排序。
3.选取区间 [1, 𝑛 − 1] 中的最小元素,将其与索引 1 处的元素交换。完成后,数组前 2 个元素已排序。
4. 以此类推。经过 𝑛 − 1 轮选择与交换后,数组前 𝑛 − 1 个元素已排序。
5. 仅剩的一个元素必定是最大元素,无须排序,因此数组排序完成
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

/* 选择排序 */
void selectionSort(vector<int> &nums) {int n = nums.size();// 外循环:未排序区间为 [i, n-1]for (int i = 0; i < n - 1; i++) {// 内循环:找到未排序区间内的最小元素int k = i;for (int j = i + 1; j < n; j++) {if (nums[j] < nums[k])k = j; // 记录最小元素的索引}// 将该最小元素与未排序区间的首个元素交换swap(nums[i], nums[k]);}
}

时间复杂度𝑂(𝑛^2)、非自适应排序:外循环共 𝑛 − 1 轮,第一轮的未排序区间长度为 𝑛 ,最后一轮的未排序区间长度为 2 ,即各轮外循环分别包含 𝑛、𝑛 − 1、…、3、2 轮内循环,求和为 ((𝑛−1)(𝑛+2))/2
空间复杂度为 𝑂(1)、原地排序:指针 𝑖 和 𝑗 使用常数大小的额外空间。
非稳定排序:如图所示,元素 nums[i] 有可能被交换至与其相等的元素的右边,导致两者的相对顺序发生改变。

在这里插入图片描述

冒泡排序

冒泡排序(bubble sort)通过连续地比较与交换相邻元素实现排序。这个过程就像气泡从底部升到顶部一样,因此得名冒泡排序。

冒泡过程可以利用元素交换操作来模拟:从数组最左端开始向右遍历,依次比较相邻元素大小,如果“左元素 > 右元素”就交换二者。遍历完成后,最大的元素会被移动到数组的最右端。

在这里插入图片描述
在这里插入图片描述
算法流程:
1.首先,对 𝑛 个元素执行“冒泡”,将数组的最大元素交换至正确位置;
2.接下来,对剩余 𝑛 − 1 个元素执行“冒泡”,将第二大元素交换至正确位置;
3.以此类推,经过 𝑛 − 1 轮“冒泡”后,前 𝑛 − 1 大的元素都被交换至正确位置;
4.仅剩的一个元素必定是最小元素,无须排序,因此数组排序完成。

在这里插入图片描述

/* 冒泡排序 */
void bubbleSort(vector<int> &nums) {// 外循环:未排序区间为 [0, i]for (int i = nums.size() - 1; i > 0; i--) {// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端for (int j = 0; j < i; j++) {if (nums[j] > nums[j + 1]) {// 交换 nums[j] 与 nums[j + 1]// 这里使用了 std::swap() 函数swap(nums[j], nums[j + 1]);}}}
}

效率优化:如果某轮“冒泡”中没有执行任何交换操作,说明数组已经完成排序,可直接返回结果。
增加一个标志位 flag 来监测这种情况,一旦出现就立即返回,冒泡排序的最差时间复杂度和平均时间复杂度仍为 𝑂(𝑛^2) ;但当输入数组完全有序时,可达到最佳时间复杂度 𝑂(𝑛)。

/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(vector<int> &nums) {// 外循环:未排序区间为 [0, i]for (int i = nums.size() - 1; i > 0; i--) {bool flag = false; // 初始化标志位// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端for (int j = 0; j < i; j++) {if (nums[j] > nums[j + 1]) {// 交换 nums[j] 与 nums[j + 1]// 这里使用了 std::swap() 函数swap(nums[j], nums[j + 1]);flag = true; // 记录交换元素cout<<"swap: "<<nums[j]<<" <-> "<<nums[j+1]<<endl;}}if (!flag)break; // 此轮“冒泡”未交换任何元素,直接跳出}
}

时间复杂度为 𝑂(𝑛^2)、自适应排序:各轮“冒泡”遍历的数组长度依次为 𝑛 − 1、𝑛 − 2、…、2、1 ,总和为 (𝑛 − 1)𝑛/2 。在引入 flag 优化后,最佳时间复杂度可达到 𝑂(𝑛) 。
空间复杂度为 𝑂(1)、原地排序:指针 𝑖 和 𝑗 使用常数大小的额外空间。
稳定排序:由于在“冒泡”中遇到相等元素不交换。

插入排序

插入排序(insertion sort)是一种简单的排序算法,在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小,并将该元素插入到正确的位置。

设基准元素为 base ,需要将从目标索引到 base 之间的所有元素向右移动一位,然后将 base 赋值给目标索引。

在这里插入图片描述

算法流程:
1.初始状态下,数组的第 1 个元素已完成排序。
2.选取数组的第 2 个元素作为 base ,将其插入到正确位置后,数组的前 2 个元素已排序。
3.选取第 3 个元素作为 base ,将其插入到正确位置后,数组的前 3 个元素已排序。
4.以此类推,在最后一轮中,选取最后一个元素作为 base ,将其插入到正确位置后,所有元素均已排序
在这里插入图片描述

/* 插入排序 */
void insertionSort(vector<int> &nums) {// 外循环:已排序元素数量为 1, 2, ..., nfor (int i = 1; i < nums.size(); i++) {int base = nums[i], j = i - 1;// 内循环:将 base 插入到已排序部分的正确位置while (j >= 0 && nums[j] > base) {nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位j--;}nums[j + 1] = base; // 将 base 赋值到正确位置 num[0]-->j=-1// cout<<base<<endl;}
}

算法特性:
时间复杂度为 𝑂(𝑛^2)、自适应排序:在最差情况下,每次插入操作分别需要循环 𝑛 − 1、𝑛 − 2、…、2、1 次,求和得到 (𝑛 − 1)𝑛/2 ,因此时间复杂度为 𝑂(𝑛 ^2) 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 𝑂(𝑛) 。
空间复杂度为 𝑂(1)、原地排序:指针 𝑖 和 𝑗 使用常数大小的额外空间。
稳定排序:在插入操作过程中,会将元素插入到相等元素的右侧,不会改变它们的顺序

插入排序的优势

插入排序的时间复杂度为 𝑂(𝑛^2) ,而快速排序的时间复杂度为 𝑂(𝑛 log 𝑛) 。尽管插入排序的时间复杂度更高,但在数据量较小的情况下,插入排序通常更快。

这个结论与线性查找和二分查找的适用情况的结论类似。快速排序这类 𝑂(𝑛 log 𝑛) 的算法属于基于分治策略的排序算法,往往包含更多单元计算操作。而在数据量较小时,𝑛^2𝑛 log 𝑛 的数值比较接近,复杂度不占主导地位,每轮中的单元操作数量起到决定性作用。

虽然冒泡排序、选择排序和插入排序的时间复杂度都为 𝑂(𝑛 ^2) ,但在实际情况中,插入排序的使用频率显著高于冒泡排序和选择排序,主要有以下原因:
1.冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高;
2.选择排序在任何情况下的时间复杂度都为 𝑂(𝑛^2) 。如果给定一组部分有序的数据,插入排序通常比选
择排序效率更高。
3.选择排序不稳定,无法应用于多级排序。

快速排序

快速排序(quick sort)是一种基于分治策略的排序算法,运行高效,应用广泛。
快速排序的核心操作是“哨兵划分”,其目标是:选择数组中的某个元素作为“基准数”,将所有小于基准数的元素移到其左侧,而大于基准数的元素移到其右侧。

具体来说,哨兵划分的流程如图所示:
在这里插入图片描述
在这里插入图片描述

  1. 选取数组最左端元素作为基准数,初始化两个指针 i 和 j 分别指向数组的两端。
  2. 设置一个循环,在每轮中使用 i(j)分别寻找第一个比基准数大(小)的元素,然后交换这两个元素。
  3. 循环执行步骤 2. ,直到 i 和 j 相遇时停止,最后将基准数交换至两个子数组的分界线。

哨兵划分完成后,原数组被划分成三部分:左子数组、基准数、右子数组,且满足“左子数组任意元素 ≤ 基准数 ≤ 右子数组任意元素”。因此,我们接下来只需对这两个子数组进行排序。

/* 元素交换 */
static void swap(vector<int> &nums, int i, int j) {int tmp = nums[i];nums[i] = nums[j];nums[j] = tmp;
}/* 哨兵划分 */
static int partition(vector<int> &nums, int left, int right) {// 以 nums[left] 为基准数int i = left, j = right;while (i < j) {while (i < j && nums[j] >= nums[left])j--; // 从右向左找首个小于基准数的元素while (i < j && nums[i] <= nums[left])i++;          // 从左向右找首个大于基准数的元素swap(nums, i, j); // 交换这两个元素}swap(nums, i, left); // 将基准数交换至两子数组的分界线return i;            // 返回基准数的索引
}

整体流程:
1.首先,对原数组执行一次“哨兵划分”,得到未排序的左子数组和右子数组;
2.然后,对左子数组和右子数组分别递归执行“哨兵划分”;
3.持续递归,直至子数组长度为 1 时终止,从而完成整个数组的排序;

在这里插入图片描述

/* 快速排序(尾递归优化) */
static void quickSort(vector<int> &nums, int left, int right) {// 子数组长度为 1 时终止while (left < right) {// 哨兵划分操作int pivot = partition(nums, left, right);// 对两个子数组中较短的那个执行快速排序if (pivot - left < right - pivot) {quickSort(nums, left, pivot - 1); // 递归排序左子数组left = pivot + 1;                 // 剩余未排序区间为 [pivot + 1, right]} else {quickSort(nums, pivot + 1, right); // 递归排序右子数组right = pivot - 1;                 // 剩余未排序区间为 [left, pivot - 1]}}
}

时间复杂度𝑂(𝑛 log 𝑛)、自适应排序:在平均情况下,哨兵划分的递归层数为 log 𝑛 ,每层中的总循环数为 𝑛 ,总体使用 𝑂(𝑛 log 𝑛) 时间。在最差情况下,每轮哨兵划分操作都将长度为 𝑛 的数组划分为长度为 0 和 𝑛−1 的两个子数组,此时递归层数达到 𝑛 ,每层中的循环数为 𝑛 ,总体使用 𝑂(𝑛^2) 时间。
空间复杂度为 𝑂(𝑛)、原地排序:在输入数组完全倒序的情况下,达到最差递归深度 𝑛 ,使用 𝑂(𝑛) 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
非稳定排序:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。

快速排序为什么快
尽管快速排序的平均时间复杂度与“归并排序”和“堆排序”相同,但通常快速排序的效率更高,主要有以下原因:
1.出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 𝑂(𝑛^2) ,没有归并排序稳定,但在绝大多数情况下,快速排序能在 𝑂(𝑛 log 𝑛) 的时间复杂度下运行。
2.缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较
高。而像“堆排序”这类算法需要跳跃式访问元素,从而缺乏这一特性。
3. 复杂度的常数系数小:快速排序的比较、赋值、交换等操作的总数量最少。这与“插入排序”比“冒泡排序”更快的原因类似。

基准数优化

快速排序在某些输入下的时间效率可能降低。
极端例子:假设输入数组是完全倒序的,由于选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为 𝑛 − 1、右子数组长度为 0 。如此递归下去,每轮哨兵划分后都有一个子数组的长度为 0 ,分治策略失效,快速排序退化为“冒泡排序”的近似形式。

为了尽量避免这种情况发生,可以优化哨兵划分中的基准数的选取策略。例如,可以随机选取一个元素作为基准数。然而,如果运气不佳,每次都选到不理想的基准数,效率仍然不尽如人意。

为了进一步改进,可以在数组中选取三个候选元素(通常为数组的首、尾、中点元素),并将这三个候选元素的中位数作为基准数。这样一来,基准数“既不太小也不太大”的概率将大幅提升。当然,还可以选取更多候选元素,以进一步提高算法的稳健性。采用这种方法后,时间复杂度劣化至 𝑂(𝑛^2) 的概率大大降低。

/* 哨兵划分(三数取中值) */
static int partition(vector<int> &nums, int left, int right) {// 选取三个候选元素的中位数int med = medianThree(nums, left, (left + right) / 2, right);// 将中位数交换至数组最左端swap(nums, left, med);// 以 nums[left] 为基准数int i = left, j = right;while (i < j) {while (i < j && nums[j] >= nums[left])j--; // 从右向左找首个小于基准数的元素while (i < j && nums[i] <= nums[left])i++;          // 从左向右找首个大于基准数的元素swap(nums, i, j); // 交换这两个元素}swap(nums, i, left); // 将基准数交换至两子数组的分界线return i;            // 返回基准数的索引
}

尾递归优化

在某些输入下,快速排序可能占用空间较多。以完全有序的输入数组为例,设递归中的子数组长度为 𝑚 ,每轮哨兵划分操作都将产生长度为 0 的左子数组和长度为 𝑚 − 1 的右子数组,这意味着每一层递归调用减少的问题规模非常小(只减少一个元素),递归树的高度会达到 𝑛−1 ,此时需要占用 𝑂(𝑛) 大小的栈帧空间。

为了防止栈帧空间的累积,可以在每轮哨兵排序完成后,比较两个子数组的长度,仅对较短的子数组进行递归。
由于较短子数组的长度不会超过 𝑛/2 ,因此这种方法能确保递归深度不超过 log 𝑛 ,从而将最差空间复杂度优化至 𝑂(log 𝑛) 。代码如下所示:

/* 快速排序(尾递归优化) */
static void quickSort(vector<int> &nums, int left, int right) {// 子数组长度为 1 时终止while (left < right) {// 哨兵划分操作int pivot = partition(nums, left, right);// 对两个子数组中较短的那个执行快速排序if (pivot - left < right - pivot) {quickSort(nums, left, pivot - 1); // 递归排序左子数组left = pivot + 1;                 // 剩余未排序区间为 [pivot + 1, right]} else {quickSort(nums, pivot + 1, right); // 递归排序右子数组right = pivot - 1;                 // 剩余未排序区间为 [left, pivot - 1]}}
}

归并排序

归并排序(merge sort)是一种基于分治策略的排序算法,包含“划分”和“合并”阶段。
1.划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
2.合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。
在这里插入图片描述
“划分阶段” 从顶至底递归地将数组从中点切分为两个子数组。
1.计算数组中点 mid ,递归划分左子数组(区间 [left, mid] )和右子数组(区间 [mid + 1, right] )。
2.递归执行步骤 1. ,直至子数组区间长度为 1 时终止。

“合并阶段” 从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。
在这里插入图片描述
在这里插入图片描述
观察发现,归并排序与二叉树后序遍历的递归顺序是一致的:
后序遍历:先递归左子树,再递归右子树,最后处理根节点。
归并排序:先递归左子数组,再递归右子数组,最后处理合并。
归并排序的实现如以下代码所示。请注意,nums 的待合并区间为 [left, right] ,而 tmp 的对应区间为 [0, right - left]

/* 合并左子数组和右子数组 */
void merge(vector<int> &nums, int left, int mid, int right) {// 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]// 创建一个临时数组 tmp ,用于存放合并后的结果vector<int> tmp(right - left + 1);// 初始化左子数组和右子数组的起始索引int i = left, j = mid + 1, k = 0;// 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中while (i <= mid && j <= right) {if (nums[i] <= nums[j])tmp[k++] = nums[i++];elsetmp[k++] = nums[j++];}// 将左子数组和右子数组的剩余元素复制到临时数组中while (i <= mid) {tmp[k++] = nums[i++];}while (j <= right) {tmp[k++] = nums[j++];}// 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间for (k = 0; k < tmp.size(); k++) {nums[left + k] = tmp[k];}
}

时间复杂度为 𝑂(𝑛 log 𝑛)、非自适应排序:划分产生高度为 log 𝑛 的递归树,每层合并的总操作数量为 𝑛 ,因此总体时间复杂度为 𝑂(𝑛 log 𝑛) 。
空间复杂度为 𝑂(𝑛)、非原地排序:递归深度为 log 𝑛 ,使用 𝑂(log 𝑛) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 𝑂(𝑛) 大小的额外空间。
稳定排序:在合并过程中,相等元素的次序保持不变。

链表排序

对于链表,归并排序相较于其他排序算法具有显著优势,可以将链表排序任务的空间复杂度优化至 𝑂(1) 。
划分阶段:可以使用“迭代”替代“递归”来实现链表划分工作,从而省去递归使用的栈帧空间。
合并阶段:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。

堆排序

堆排序(heap sort)是一种基于堆数据结构实现的高效排序算法。可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。
1.输入数组并建立小顶堆,此时最小元素位于堆顶;
2.不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。

以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。
在实际中,通常使用一种更加优雅的实现方式。

算法流程
1.输入数组并建立大顶堆。完成后,最大元素位于堆顶;
2.将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 1 ,已排序元素数量加1;
3.从堆顶元素开始,从顶到底执行堆化操作(sift down)。完成堆化后,堆的性质得到修复;
4.循环执行第 2. 步和第 3. 步。循环 𝑛 − 1 轮后,即可完成数组排序。

实际上,元素出堆操作中也包含第 2. 步和第 3. 步,只是多了一个弹出元素的步骤。

在这里插入图片描述
在这里插入图片描述

在代码实现中,使用了与“堆”相同的从顶至底堆化 sift_down() 函数。值得注意的是,由于堆的长度会随着提取最大元素而减小,因此需要给 sift_down() 函数添加一个长度参数 𝑛 ,用于指定堆的当前有效长度。代码如下所示:

/*** File: heap_sort.cpp* Created Time: 2023-05-26* Author: Krahets (krahets@163.com)*/#include "../utils/common.hpp"/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(vector<int> &nums, int n, int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = 2 * i + 1;int r = 2 * i + 2;int ma = i;if (l < n && nums[l] > nums[ma])ma = l;if (r < n && nums[r] > nums[ma])ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i) {break;}// 交换两节点swap(nums[i], nums[ma]);// 循环向下堆化i = ma;}
}/* 堆排序 */
void heapSort(vector<int> &nums) {// 建堆操作:堆化除叶节点以外的其他所有节点for (int i = nums.size() / 2 - 1; i >= 0; --i) {siftDown(nums, nums.size(), i);}// 从堆中提取最大元素,循环 n-1 轮for (int i = nums.size() - 1; i > 0; --i) {// 交换根节点与最右叶节点(交换首元素与尾元素)swap(nums[0], nums[i]);// 以根节点为起点,从顶至底进行堆化siftDown(nums, i, 0);}
}/* Driver Code */
int main() {vector<int> nums = {4, 1, 3, 1, 5, 2};heapSort(nums);cout << "堆排序完成后 nums = ";printVector(nums);return 0;
}

算法特性
时间复杂度为 𝑂(𝑛 log 𝑛)、非自适应排序:建堆操作使用 𝑂(𝑛) 时间。从堆中提取最大元素的时间复杂度为 𝑂(log 𝑛) ,共循环 𝑛 − 1 轮。
空间复杂度为 𝑂(1)、原地排序:几个指针变量使用 𝑂(1) 空间。元素交换和堆化操作都是在原数组上进行的。
非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。

桶排序

基于比较的排序算法”,它们通过比较元素间的大小来实现排序。
此类排序算法的时间复杂度无法超越 𝑂(𝑛 log 𝑛) 。
“非比较排序算法”,它们的时间复杂度可以达到线性阶。

桶排序(bucket sort)是分治策略的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。

在这里插入图片描述

考虑一个长度为 𝑛 的数组,其元素是范围 [0, 1) 内的浮点数。
桶排序的流程如图所示:
1.初始化 𝑘 个桶,将 𝑛 个元素分配到 𝑘 个桶中。
2.对每个桶分别执行排序(这里采用编程语言的内置排序函数)。
3.按照桶从小到大的顺序合并结果。

/*** File: bucket_sort.cpp* Created Time: 2023-03-30* Author: Krahets (krahets@163.com)*/#include "../utils/common.hpp"/* 桶排序 */
void bucketSort(vector<float> &nums) {// 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素int k = nums.size() / 2;vector<vector<float>> buckets(k);// 1. 将数组元素分配到各个桶中for (float num : nums) {// 输入数据范围为 [0, 1),使用 num * k 映射到索引范围 [0, k-1]int i = num * k;// 将 num 添加进桶 bucket_idxbuckets[i].push_back(num);}// 2. 对各个桶执行排序for (vector<float> &bucket : buckets) {// 使用内置排序函数,也可以替换成其他排序算法sort(bucket.begin(), bucket.end());}// 3. 遍历桶合并结果int i = 0;for (vector<float> &bucket : buckets) {for (float num : bucket) {nums[i++] = num;}}
}/* Driver Code */
int main() {// 设输入数据为浮点数,范围为 [0, 1)vector<float> nums = {0.49f, 0.96f, 0.82f, 0.09f, 0.57f, 0.43f, 0.91f, 0.75f, 0.15f, 0.37f};bucketSort(nums);cout << "桶排序完成后 nums = ";printVector(nums);return 0;
}

算法特性
桶排序适用于处理体量很大的数据。例如,输入数据包含 100 万个元素,由于空间限制,系统内存无法一次性加载所有数据。此时,可以将数据分成 1000 个桶,然后分别对每个桶进行排序,最后将结果合并。

时间复杂度为 𝑂(𝑛 + 𝑘) :假设元素在各个桶内平均分布,那么每个桶内的元素数量为 𝑛/𝑘 。
假设排序单个桶使用 𝑂( 𝑛/𝑘 log 𝑛/𝑘) 时间,则排序所有桶使用 𝑂(𝑛 log 𝑛/𝑘) 时间。当桶数量 𝑘 比较大时,时间复杂度则趋向于 𝑂(𝑛) 。合并结果时需要遍历所有桶和元素,花费 𝑂(𝑛 + 𝑘) 时间。
自适应排序:在最差情况下,所有数据被分配到一个桶中,且排序该桶使用 𝑂(𝑛^2) 时间。
空间复杂度为 𝑂(𝑛 + 𝑘)、非原地排序:需要借助 𝑘 个桶和总共 𝑛 个元素的额外空间。
桶排序是否稳定取决于排序桶内元素的算法是否稳定。

如何实现平均分配?
桶排序的时间复杂度理论上可以达到 𝑂(𝑛) ,关键在于将元素均匀分配到各个桶中,因为实际数据往往不是均匀分布的。

为实现平均分配,可以先设定一条大致的分界线,将数据粗略地分到几个桶中。分配完毕后,再将数据较多的桶继续划分为几个桶,直至所有桶中的元素数量大致相等。
可以根据数据概率分布设置每个桶的分界线。值得注意的是,数据分布并不一定需要特意统计,也可以根据数据特点采用某种概率模型进行近似。

计数排序

计数排序通过统计元素数量来实现排序,通常应用于整数数组。

给定一个长度为 𝑛 的数组 nums ,其中的元素都是“非负整数”,计数排序的整体流程:
1.遍历数组,找出其中的最大数字,记为 𝑚 ,然后创建一个长度为 𝑚 + 1 的辅助数组 counter 。
2.借助 counter 统计 nums 中各数字的出现次数,其中 counter[num] 对应数字 num 的出现次数。统计方法很简单,只需遍历 nums(设当前数字为 num),每轮将 counter[num] 增加 1 即可。
3.由于 counter 的各个索引天然有序,因此相当于所有数字已经排序好了。接下来,遍历 counter ,根据各数字出现次数从小到大的顺序填入 nums 即可。
在这里插入图片描述

/*** File: counting_sort.cpp* Created Time: 2023-03-17* Author: Krahets (krahets@163.com)*/#include "../utils/common.hpp"/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(vector<int> &nums) {// 1. 统计数组最大元素 mint m = 0;for (int num : nums) {m = max(m, num);}// 2. 统计各数字的出现次数// counter[num] 代表 num 的出现次数vector<int> counter(m + 1, 0);for (int num : nums) {counter[num]++;}// 3. 遍历 counter ,将各元素填入原数组 numsint i = 0;for (int num = 0; num < m + 1; num++) {for (int j = 0; j < counter[num]; j++, i++) {nums[i] = num;}}
}

从桶排序的角度看,可以将计数排序中的计数数组 counter 的每个索引视为一个桶,将统计数量的过程看作将各个元素分配到对应的桶中。本质上,计数排序是桶排序在整型数据下的一个特例。

完整实现

如果输入数据是对象,上述步骤 3. 就失效了。
首先计算 counter 的“前缀和”。顾名思义,索引 i 处的前缀和 prefix[i] 等于数组前 i 个元素之和:
在这里插入图片描述
前缀和具有明确的意义,prefix[num] - 1 代表元素 num 在结果数组 res 中最后一次出现的索引。
它告诉我们各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 nums 的每个元素 num ,在每轮迭代中执行以下两步:
1.将 num 填入数组 res 的索引 prefix[num] - 1 处。
2.令前缀和 prefix[num] 减小 1 ,从而得到下次放置 num 的索引。
遍历完成后,数组 res 中就是排序好的结果,最后使用 res 覆盖原数组 nums 即可。
在这里插入图片描述
在这里插入图片描述

/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(vector<int> &nums) {// 1. 统计数组最大元素 mint m = 0;for (int num : nums) {m = max(m, num);}// 2. 统计各数字的出现次数// counter[num] 代表 num 的出现次数vector<int> counter(m + 1, 0);for (int num : nums) {counter[num]++;}// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引for (int i = 0; i < m; i++) {counter[i + 1] += counter[i];}// 4. 倒序遍历 nums ,将各元素填入结果数组 res// 初始化数组 res 用于记录结果int n = nums.size();vector<int> res(n);for (int i = n - 1; i >= 0; i--) {int num = nums[i];res[counter[num] - 1] = num; // 将 num 放置到对应索引处counter[num]--;              // 令前缀和自减 1 ,得到下次放置 num 的索引}// 使用结果数组 res 覆盖原数组 numsnums = res;
}

算法特性

时间复杂度为 𝑂(𝑛 + 𝑚) :涉及遍历 nums 和遍历 counter ,都使用线性时间。一般情况下 𝑛 ≫ 𝑚 ,时间复杂度趋于 𝑂(𝑛) 。
空间复杂度为 𝑂(𝑛 + 𝑚)、非原地排序:借助了长度分别为 𝑛 和 𝑚 的数组 res 和 counter 。
稳定排序:由于向 res 中填充元素的顺序是“从右向左”的,因此倒序遍历 nums 可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历 nums 也可以得到正确的排序结果,但结果是非稳定的。

局限性

仅通过统计数量就可以实现高效的排序。然而,使用计数排序的前置条件相对较为严格。

计数排序只适用于非负整数。若想将其用于其他类型的数据,需要确保这些数据可以转换为非负整数,并且在转换过程中不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去。
计数排序适用于数据量大但数据范围较小的情况。比如,在上述示例中 𝑚 不能太大,否则会占用过多空间。而当 𝑛 ≪ 𝑚 时,计数排序使用 𝑂(𝑚) 时间,可能比 𝑂(𝑛 log 𝑛) 的排序算法还要慢。

基数排序

基数排序的核心思想与计数排序一致,也通过统计个数来实现排序。
在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。

以学号数据为例,假设数字的最低位是第 1 位,最高位是第 8 位,基数排序的流程如图:
在这里插入图片描述
对于一个 𝑑 进制的数字 𝑥 ,要获取其第 𝑘 位 𝑥_𝑘 ,可以使用以下计算公式:
在这里插入图片描述
其中 ⌊𝑎⌋ 表示对浮点数 𝑎 向下取整,而 mod 𝑑 表示对 𝑑 取模(取余)。对于学号数据,𝑑 = 10 且 𝑘 ∈ [1, 8]。

/*** File: radix_sort.cpp* Created Time: 2023-03-26* Author: Krahets (krahets@163.com)*/#include "../utils/common.hpp"/* 获取元素 num 的第 k 位,其中 exp = 10^(k-1) */
int digit(int num, int exp) {// 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算return (num / exp) % 10;
}/* 计数排序(根据 nums 第 k 位排序) */
void countingSortDigit(vector<int> &nums, int exp) {// 十进制的位范围为 0~9 ,因此需要长度为 10 的桶数组vector<int> counter(10, 0);int n = nums.size();// 统计 0~9 各数字的出现次数for (int i = 0; i < n; i++) {int d = digit(nums[i], exp); // 获取 nums[i] 第 k 位,记为 dcounter[d]++;                // 统计数字 d 的出现次数}// 求前缀和,将“出现个数”转换为“数组索引”for (int i = 1; i < 10; i++) {counter[i] += counter[i - 1];}// 倒序遍历,根据桶内统计结果,将各元素填入 resvector<int> res(n, 0);for (int i = n - 1; i >= 0; i--) {int d = digit(nums[i], exp);int j = counter[d] - 1; // 获取 d 在数组中的索引 jres[j] = nums[i];       // 将当前元素填入索引 jcounter[d]--;           // 将 d 的数量减 1}// 使用结果覆盖原数组 numsfor (int i = 0; i < n; i++)nums[i] = res[i];
}/* 基数排序 */
void radixSort(vector<int> &nums) {// 获取数组的最大元素,用于判断最大位数int m = *max_element(nums.begin(), nums.end());// 按照从低位到高位的顺序遍历for (int exp = 1; exp <= m; exp *= 10)// 对数组元素的第 k 位执行计数排序// k = 1 -> exp = 1// k = 2 -> exp = 10// 即 exp = 10^(k-1)countingSortDigit(nums, exp);
}/* Driver Code */
int main() {// 基数排序vector<int> nums = {10546151, 35663510, 42865989, 34862445, 81883077,88906420, 72429244, 30524779, 82060337, 63832996};radixSort(nums);cout << "基数排序完成后 nums = ";printVector(nums);return 0;
}

为什么从最低位开始排序?
在连续的排序轮次中,后一轮排序会覆盖前一轮排序的结果。举例来说,如果第一轮排序结果 𝑎 < 𝑏 ,而第二轮排序结果 𝑎 > 𝑏 ,那么第二轮的结果将取代第一轮的结果。由于数字的高位优先级高于低位,因此应该先排序低位再排序高位。

算法特性

相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数 𝑘 过大,可能导致时间复杂度 𝑂(𝑛𝑘) ≫ 𝑂(𝑛^2)。

时间复杂度为 𝑂(𝑛𝑘):设数据量为 𝑛、数据为 𝑑 进制、最大位数为 𝑘 ,则对某一位执行计数排序使用 𝑂(𝑛 + 𝑑) 时间,排序所有 𝑘 位使用 𝑂((𝑛 + 𝑑)𝑘) 时间。通常情况下,𝑑 和 𝑘 都相对较小,时间复杂度趋向 𝑂(𝑛) 。
空间复杂度为 𝑂(𝑛 + 𝑑)、非原地排序:与计数排序相同,基数排序需要借助长度为 𝑛 和 𝑑 的数组 res 和 counter 。
稳定排序:当计数排序稳定时,基数排序也稳定;当计数排序不稳定时,基数排序无法保证得到正确的
排序结果。

小结

在这里插入图片描述

学习地址

学习地址:https://github.com/krahets/hello-algo
重新复习数据结构,所有的内容都来自这里。

相关文章:

数据结构和算法:十大排序

排序算法 排序算法用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用&#xff0c;因为有序数据通常能够被更高效地查找、分析和处理。 排序算法中的数据类型可以是整数、浮点数、字符或字符串等。排序的判断规则可根据需求设定&#xff0c;如数字大小、字符 ASCII…...

LLaMA-Factory微调(sft)ChatGLM3-6B保姆教程

LLaMA-Factory微调&#xff08;sft&#xff09;ChatGLM3-6B保姆教程 准备 1、下载 下载LLaMA-Factory下载ChatGLM3-6B下载ChatGLM3windows下载CUDA ToolKit 12.1 &#xff08;本人是在windows进行训练的&#xff0c;显卡GTX 1660 Ti&#xff09; CUDA安装完毕后&#xff0c…...

Web安全-浏览器安全策略及跨站脚本攻击与请求伪造漏洞原理

Web安全-浏览器安全策略及跨站脚本攻击与请求伪造漏洞原理 Web服务组件分层概念 静态层 &#xff1a;web前端框架&#xff1a;Bootstrap&#xff0c;jQuery,HTML5框架等&#xff0c;主要存在跨站脚本攻击脚本层&#xff1a;web应用&#xff0c;web开发框架&#xff0c;web服务…...

蓝桥杯B组C++省赛——飞机降落(DFS)

题目连接&#xff1a;https://www.lanqiao.cn/problems/3511/learning/ 思路&#xff1a;由于数据范围很小&#xff0c;所有选择用DFS枚举所有飞机的所有的降落顺序&#xff0c;看哪个顺序可以让所有飞机顺利降落&#xff0c;有的话就算成功方案&#xff0c;输出了“YES”。 …...

Java 中的 Map集合

文章目录 添加和修改元素获取元素检查元素删除元素获取所有键 / 值 / 键值对大小 在 Java 中&#xff0c;Map 接口是 Java 集合框架的一部分&#xff0c;它存储键值对&#xff08;key-value pairs&#xff09;。Map 接口有许多常用的方法&#xff0c;用于添加、删除、获取元素&…...

基于springboot大学生兼职平台管理系统(完整源码+数据库)

一、项目简介 本项目是一套基于springboot大学生兼职平台管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功…...

C#学生信息管理系统

一、引言 学生信息管理系统是现代学校管理的重要组成部分&#xff0c;它能够有效地管理学生的基本信息、课程信息、成绩信息等&#xff0c;提高学校管理的效率和质量。本文将介绍如何使用SQL Server数据库和C#语言在.NET平台上开发一个学生信息管理系统的课程设计项目。 二、项…...

双机 Cartogtapher 建图文件配置

双机cartogtapher建图 最近在做硕士毕设的最后一个实验&#xff0c;其中涉及到多机建图&#xff0c;经过调研最终采用cartographer建图算法&#xff0c;其中配置多机建图的文件有些麻烦&#xff0c;特此博客以记录 非常感谢我的同门 ”叶少“ 山上的稻草人-CSDN博客的帮助&am…...

VMware提示 该虚拟机似乎正在使用中,如何解决?

VMware提示 该虚拟机似乎正在使用中,如何解决&#xff1f; 问题描述解决方法1.找到安装VMware的文件目录2.在VMware目录下.lck后缀的文件夹删除或重命名3.运行VMware 问题描述 该虚拟机似乎正在使用中。 如果该虚拟机未在使用&#xff0c;请按“获取所有权(T)”按钮获取它的所…...

阿里云短信服务业务

一、了解阿里云用户权限操作 1.注册账号、实名认证&#xff1b; 2.使用AccessKey 步骤一 点击头像&#xff0c;权限安全的AccessKey 步骤二 设置子用户AccessKey 步骤三 添加用户组和用户 步骤四 添加用户组记得绑定短信服务权限 步骤五 添加用户记得勾选openApi访问 添加…...

ElasticSearch的DSL查询

ElasticSearch的DSL查询 准备工作 创建测试方法&#xff0c;初始化测试结构。 import org.apache.http.HttpHost; import org.apache.lucene.search.TotalHits; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchRespo…...

每天定时杀spark进程

##编写shell脚本 #!/bin/bash arr(“zhangsan” “lisi” “wangwu”) for i in “${arr[]}” do processps -ef|grep ${i}| grep -v "grep"| awk {print $2} kill -9 ${process} done ##每日定时杀手动启动的进程 0 19 * * * cd /kill_process && sh kil…...

win10 安装kubectl,配置config连接k8s集群

安装kubectl 按照官方文档安装&#xff1a;https://kubernetes.io/docs/tasks/tools/install-kubectl-windows/ curl安装 &#xff08;1&#xff09;下载curl安装压缩包: curl for Windows &#xff08;2&#xff09;配置环境变量&#xff1a; 用户变量&#xff1a; Path变…...

Calico IPIP和BGP TOR的数据包走向

IPIP Mesh全网互联 文字描述 APOD eth0 10.7.75.132 -----> APOD 网关 -----> A宿主机 cali76174826315网卡 -----> Atunl0 10.7.75.128 封装 ----> Aeth0 10.120.181.20 -----> 通过网关 10.120.181.254 -----> 下一跳 BNODE eth0 10.120.179.8 解封装 --…...

静态成员主要用于提供与类本身相关的功能或数据,有什么应用场景

静态成员&#xff08;包括静态方法和静态属性&#xff09;在JavaScript中常用于多种应用场景&#xff0c;它们为类提供了与类本身直接相关而不是与实例相关的功能或数据。以下是一些常见的应用场景&#xff1a; 工厂方法 静态方法可以作为工厂方法&#xff0c;用于创建类的实…...

在线考试|基于Springboot的在线考试管理系统设计与实现(源码+数据库+文档)

在线考试管理系统目录 目录 基于Springboot的在线考试管理系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1、前台&#xff1a; 2、后台 管理员功能 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主…...

C语言-----数据在内存中的存储(1)

1.整数在内存中的存储 我们之前就了解过整数的二进制写法分别有3种&#xff0c;分别为原码&#xff0c;反码&#xff0c;补码。整型在内存中存储的是补码。 原码&#xff0c;反码&#xff0c;补码都有自己的符号位和数值位&#xff0c;符号位为1时&#xff0c;则表示负数&…...

Ribbon有哪些负载均衡策略

负载均衡类都实现了IRule接口。 RandomRule&#xff1a;随机的选用一个实例 RoundRobinRule&#xff1a;轮询的使用实例 RetryRule&#xff1a;在轮询的基础上加了一个错误重试机制&#xff0c;在deadline时间内会不断的重试 WeightResponeTimeRule&#xff1a;根据权重去做…...

websocket多级nginx代理

在使用多层Nginx代理时&#xff0c;WebSocket的连接可能会遇到一些问题&#xff0c;因为WebSocket连接是持久化的&#xff0c;它需要Upgrade头部来确认升级到WebSocket协议。在多层代理的情况下&#xff0c;每层代理可能会修改或丢失这个Upgrade头部信息。 为了确保WebSocket能…...

【python从入门到精通】-- 第四战:语句汇总

&#x1f308; 个人主页&#xff1a;白子寰 &#x1f525; 分类专栏&#xff1a;python从入门到精通&#xff0c;魔法指针&#xff0c;进阶C&#xff0c;C语言&#xff0c;C语言题集&#xff0c;C语言实现游戏&#x1f448; 希望得到您的订阅和支持~ &#x1f4a1; 坚持创作博文…...

【NC50937】货仓选址

题目 货仓选址 二分&#xff0c;前缀和&#xff0c;数学推导 思路 由题意可知货仓的位置是可以和商店的位置重合的。首先应该将商店的坐标从小到大排序&#xff0c;然后假设商店的坐标为 a i a_i ai​&#xff0c;货仓的坐标为 x x x&#xff0c;货仓左侧第一家商店&#x…...

Nginx配置使用笔记

Nginx配置使用笔记 前言 官网下载压缩包https://nginx.org/ 解压完成后当前目录cmd输入nginx指令启动 访问http://localhost:80确认启动成功 1.部署前端项目 部署前端项目到路径E:\Workspaces\Vscode\app-web 2.0配置nginx.conf文件 在nginx安装的conf目录下新建一个文件夹l…...

GridLayoutManager 中的一些坑

前言 如果GridLayoutManager使用item的布局都是wrap_cotent 那么会在布局更改时会出现一些出人意料的情况。&#xff08;本文完全不具备可读性和说教性&#xff0c;仅为博主方便查找问题&#xff09; 布局item: <!--layout_item.xml--> <?xml version"1.0&qu…...

算法实验二 矩阵最小路径和 LIS

算法实验课二 矩阵最小路径和 leetcode裸题 最小路径和 给定一个包含非负整数的 *m* x *n* 网格 grid &#xff0c;请找出一条从左上角到右下角的路径&#xff0c;使得路径上的数字总和为最小。 说明&#xff1a;每次只能向下或者向右移动一步。 示例 1&#xff1a; 输入&…...

Apache Paimon实时数据糊介绍

Apache Paimon 是一种湖格式,可以使用 Flink 和 Spark 构建实时 数据糊 架构,用于流式和批处理操作。Paimon 创新地将湖格式和 LSM(日志结构合并树)结构相结合,将实时流式更新引入湖架构中。 Paimon 提供以下核心功能: 实时更新: 主键表支持大规模更新的写入,具有非常…...

计算机网络:数据链路层 - 可靠传输协议

计算机网络&#xff1a;数据链路层 - 可靠传输协议 可靠传输概念停止-等待协议 SW回退N帧协议 GBN选择重传协议 SR 可靠传输概念 如下所示&#xff0c;帧在传输过程中受到干扰&#xff0c;产生了误码。接收方的数据链路层&#xff0c;通过真伪中的真检验序列 FCS 字段的值&…...

苍穹外卖07(缓存菜品,SpringCache,缓存套餐,添加购物车菜品和套餐多下单,查看购物车,清除购物车,删除购物车中一个商品)

目录 一、缓存菜品 1 问题说明 2 实现思路 3 代码开发&#xff1a;修改DishServiceImpl 4 功能测试 二、SpringCache 1. 介绍 2. 使用语法 1 起步依赖 2 使用要求 3 常用注解 4 SpEL表达式(了解备用) 5 步骤小结 3.入门案例 1 准备环境 2 使用入门 1 引导类上加…...

C语言第三十八弹---编译和链接

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 编译和链接 1、翻译环境和运行环境 2、翻译环境 2.1、预处理&#xff08;预编译&#xff09; 2.2、编译 2.2.1、词法分析 2.2.2、语法分析 2.2.3、语义分…...

无人售货奶柜:开启便捷生活的新篇章

无人售货奶柜&#xff1a;开启便捷生活的新篇章 在这个快节奏的现代生活中&#xff0c;科技的革新不仅为我们带来了前所未有的便利&#xff0c;更在不经意间改变着我们的日常。其中&#xff0c;无人售货技术的出现&#xff0c;尤其是无人售货奶柜&#xff0c;已经成为我们生活…...

STM32为什么不能跑Linux?

STM32是一系列基于ARM Cortex-M微控制器的产品&#xff0c;它们主要用于嵌入式系统中。而Linux则是一个开源的类Unix操作系统&#xff0c;主要面向的是桌面电脑、服务器等资源丰富的计算机。虽然理论上可以将Linux移植到STM32上运行&#xff0c;但是由于两者之间存在着很多技术…...

公共资源交易网站建设方案/种子资源

PS&#xff1a;用代码画点这样写是为了跟后面的用鼠标画点线面区分出来画点drawPointGraphic: function () {//点有多种样式&#xff1a;一般的点&#xff0c;显示文字&#xff0c;显示图片//一般的点let wkt "POINT(113.566806 22.22445)";//样式//PS&#xff1a;其…...

网站做调查问卷给钱的兼职/东莞做网站seo

我们有一个财务系统比较看重财务数据的安全性&#xff0c;同时我们拥有两套系统&#xff0c;一个生产环境(Linux)&#xff0c;一个应急备份环境(Windows)。备份环我们有一个财务系统比较看重财务数据的安全性&#xff0c;同时我们拥有两套系统&#xff0c;一个生产环境(Linux)&…...

wordpress 官方网站/怎么做公司网站推广

问题描述 所需的包在mavenCentral中没有&#xff0c;但又需要这样的包&#xff08;有可能为另一个项目打成的jar包&#xff09; 解决方法 方法一&#xff1a; 创建本地maven&#xff08;或gradle&#xff09;仓库&#xff0c;把所需的jar放入仓库中&#xff0c;通过mavenLoc…...

网站建设属于办公费吗/网站推广关键词排名优化

目前运用得比较广泛的有两种声明式事务管理&#xff0c;一种是Transactional&#xff0c;另一种是在配置文件中做相关的规则事务说明。 这里呢&#xff0c;我就直接给大家讲讲Transactional声明式事务管理吧。配置文件的声明式事务管理参考http://www.design63.com.cn/showsite…...

新建幼儿园网站如何做/企业管理培训班

CentOS7默认数据库是mariadb,配置等用着不习惯,因此决定改成mysql,但是CentOS7的yum源中默认好像是没有mysql的。为了解决这个问题&#xff0c;我们要先下载mysql的repo源。1.下载mysql的repo源$ wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm2.安装my…...

营销型网站建设定制网站建设/百度极速版app下载

前言#回歸使用 vim 當作主要開發工具後&#xff0c;為了省下調效 vimrc 的時間&#xff0c;決定先用別人整理好的設定&#xff0c;於是乎找到了 spf13-vim&#xff0c;便開始的了快樂的 vim 生活。spf13-vim 用了數個月之後&#xff0c;熟悉了不少的設定方式&#xff0c;也調整…...