java算法day45 | 动态规划part07 ● 70. 爬楼梯 (进阶) ● 322. 零钱兑换 ● 279.完全平方数
70. 爬楼梯 (进阶)
题目描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
输入描述:输入共一行,包含两个正整数,分别表示n, m
输出描述:输出一个整数,表示爬到楼顶的方法数。
输入示例:3 2
输出示例:3
提示:
当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。
此时你有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶段
1 阶 + 2 阶
2 阶 + 1 阶
-
确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。 -
确定递推公式
在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j] -
dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果 -
确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。 -
举例来推导dp数组
import java.util.Scanner;public class Main{public static void main(String[] args){Scanner in=new Scanner(System.in);int n=in.nextInt();int m=in.nextInt();int[] dp=new int[n+1];dp[0]=1;for(int j=1;j<=n;j++){for(int i=0;i<=m;i++){if(j>=i){dp[j]=dp[j]+dp[j-i];}}}System.out.println(dp[n]);}
}
时间复杂度:O(mn)
空间复杂度:O(n)
322. 零钱兑换


动规五部曲分析如下:
-
确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j] -
确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); -
dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。 -
确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。 -
举例推导dp数组
class Solution {public int coinChange(int[] coins, int amount) {int max=Integer.MAX_VALUE;int[] dp=new int[amount+1];for(int i=0;i<dp.length;i++){dp[i]=max;}dp[0]=0;for(int i=0;i<coins.length;i++){for(int j=coins[i];j<=amount;j++){if(dp[j-coins[i]]!=max){//只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要dp[j]=Math.min(dp[j],dp[j-coins[i]]+1);}}}return dp[amount]==max?-1:dp[amount];}
}
时间复杂度: O(n * amount),其中 n 为 coins 的长度
空间复杂度: O(amount)
279.完全平方数


动规五部曲分析如下:
-
确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j] -
确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]); -
dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
非0下标的dp[j]应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。 -
确定遍历顺序
我们知道这是完全背包,
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
class Solution {public int numSquares(int n) {int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];for (int j = 0; j <= n; j++) {//初始化dp[j] = max;}dp[0]=0;for(int i=1;i*i<=n;i++){int weight=i*i;for(int j=weight;j<=n;j++){dp[j]=Math.min(dp[j],dp[j-weight]+1);}}return dp[n];}
}
时间复杂度: O(n * √n)
空间复杂度: O(n)
相关文章:
java算法day45 | 动态规划part07 ● 70. 爬楼梯 (进阶) ● 322. 零钱兑换 ● 279.完全平方数
70. 爬楼梯 (进阶) 题目描述: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬至多m (1 < m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 输入描述:输入…...
HuggingFace踩坑记录-连不上,根本连不上
学习 transformers 的第一步,往往是几句简单的代码 from transformers import pipelineclassifier pipeline("sentiment-analysis") classifier("We are very happy to show you the 🤗 Transformers library.") ""&quo…...
面试题:Spring Boot Starter的功能与使用场景
Spring Boot Starter 是 Spring Boot 框架为了简化项目的初始化和配置工作而设计的一种模块化依赖管理方式。它主要具有以下几个关键功能和使用场景: 功能: 1. 依赖管理每个 Starter 都是一组相关的依赖项集合,这些依赖项都是为了实现特定功能…...
上位机图像处理和嵌入式模块部署(qmacvisual之n点标定)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 工业场景中,很多时候图像是用来做测量的。虽然我们很希望载台是平的,摄像头是正对着拍摄物体的,但是运行时间长…...
Francek Chen 的128天创作纪念日
目录 Francek Chen 的128天创作纪念日机缘收获日常成就憧憬 Francek Chen 的128天创作纪念日 Francek Chen 的个人主页 机缘 不知不觉的加入CSDN已有两年时间了,最初我第一次接触CSDN技术社区是在2022年4月的时候,通过学长给我们推荐了几个IT社区平台&a…...
PyTorch之Torch Script的简单使用
一、参考资料 TorchScript 简介 Torch Script Loading a TorchScript Model in C TorchScript 解读(一):初识 TorchScript libtorch教程(一)开发环境搭建:VSlibtorch和Qtlibtorch 二、Torch Script模型格…...
vscode 连接远程服务器 服务器无法上网 离线配置 .vscode-server
离线配置 vscode 连接远程服务器 .vscode-server 1. .vscode-server下载 使用vscode连接远程服务器时会自动下载配置.vscode-server文件夹,如果远程服务器无法联网,则需要手动下载 1)网址:https://update.code.visualstudio.com…...
arm开发板移植工具mkfs.ext4
文章目录 一、前言二、手动安装e2fsprogs1、下载源码包2、解压源码3、配置4、编译5、安装 三、移植四、验证五、总结 一、前言 在buildroot菜单中,可以通过勾选e2fsprogs工具来安装mkfs.ext4工具: Target packages -> Filesystem and flash utilit…...
某盾滑块拼图验证码增强版
介绍 提示:文章仅供交流学习,严禁用于非法用途,如有不当可联系本人删除 最近某盾新推出了,滑块拼图验证码,如下图所示,这篇文章介绍怎么识别滑块距离相关。 参数attrs 通过GET请求获取的参数attrs, 决…...
这个世界万物存在只有一种关系:博弈
$上证指数(SH000001)$ 我能给各位最大的帮助可能就是第一个从红警游戏引入了情绪周期视角的概念,而这个概念可以帮助很多人理解市场成为一种可能性,如果不理解可以重新回归游戏进行反复体验,你体验的足够多,思考的足够多ÿ…...
c#让不同的工厂生产不同的“鸭肉”
任务目标 实现对周黑鸭工厂的产品生产统一管理,主要产品包括鸭脖和鸭翅。武汉工厂能生生产鸭脖和鸭翅,南京工厂只能生产鸭翅,长沙工厂只能生产鸭脖。 分析任务 我们需要有武汉工厂、南京工厂、长沙工厂的类,类中需要实现生产鸭…...
大数据分析与内存计算——Spark安装以及Hadoop操作——注意事项
一、Spark安装 1.相关链接 Spark安装和编程实践(Spark3.4.0)_厦大数据库实验室博客 (xmu.edu.cn) 2.安装Spark(Local模式) 按照文章中的步骤安装即可 遇到问题:xshell以及xftp不能使用 解决办法: 在…...
论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection
文章目录 RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection问题笛卡尔坐标结构图Meta-Kernel Convolution RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection 论文:https://arxiv.org/pdf/2103.10039.pdf 代码&…...
3D模型格式转换工具HOOPS Exchange如何将3D文件加载到PRC数据结构中?
HOOPS Exchange是一款高效的数据访问工具,专为开发人员设计,用于在不同的CAD(计算机辅助设计)系统之间进行高保真的数据转换和交换。由Tech Soft 3D公司开发,它支持广泛的CAD文件格式,包括但不限于AutoCAD的…...
c# wpf Template ContentTemplate
1.概要 1.1 定义内容的外观 2.2 要点分析 2.代码 <Window x:Class"WpfApp2.Window1"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schem…...
空和null是两回事
文章目录 前言 StringUtils1. 空(empty):字符串:集合: 2. null:引用类型变量:基本类型变量: 3. isBlank总结: 前言 StringUtils 提示:这里可以添加本文要记录…...
UNIAPP(小程序)每十个文章中间一个广告
三十秒刷新一次广告 ad-intervals"30" <template><view style"margin: 30rpx;"><view class"" v-for"(item,index) in 100"><!-- 广告 --><view style"margin-bottom: 20rpx;" v-if"(inde…...
pip包安装用国内镜像源
一:临时用国内源 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple 例如:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspider,这样就会从清华这边的镜像去安装pyspider库 清华:https://py…...
uniapp:小程序腾讯地图程序文件qqmap-wx-jssdk.js 文件一直找不到无法导入
先看问题: 在使用腾讯地图api时无法导入到qqmap-wx-jssdk.js文件 解决方法:1、打开qqmap-wx-jssdk.js最后一行 然后导入:这里是我的路径位置,可以根据自己的路径位置进行更改导入 最后在生命周期函数中输出: 运行效果…...
如何物理控制另一台电脑以及无网络用作副屏(现成设备和使用)
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 控制另一台电脑有很多方法&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...
起重机起升机构的安全装置有哪些?
起重机起升机构的安全装置是保障吊装作业安全的关键部件,主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理: 一、超载保护装置(核心安全装置) 1. 起重量限制器 功能:实时监测起升载荷&a…...
当下AI智能硬件方案浅谈
背景: 现在大模型出来以后,打破了常规的机械式的对话,人机对话变得更聪明一点。 对话用到的技术主要是实时音视频,简称为RTC。下游硬件厂商一般都不会去自己开发音视频技术,开发自己的大模型。商用方案多见为字节、百…...
