当前位置: 首页 > news >正文

解析Apache Kafka:在大数据体系中的基本概念和核心组件

关联阅读博客文章:探讨在大数据体系中API的通信机制与工作原理

关联阅读博客文章:深入解析大数据体系中的ETL工作原理及常见组件

关联阅读博客文章:深度剖析:计算机集群在大数据体系中的关键角色和技术要点

关联阅读博客文章:深入理解HDFS工作原理:大数据存储和容错性机制解析

引言:

在当今数字化时代,数据已经成为企业成功的关键要素之一。随着数据量的不断增长和数据处理需求的不断提高,构建高效、可靠的大数据体系成为了企业面临的重要挑战之一。在这个过程中,Apache Kafka作为一个分布式流处理平台,扮演着至关重要的角色。它不仅提供了高吞吐量、低延迟的消息传输服务,还支持实时数据流处理和复杂的事件驱动架构。

在这里插入图片描述

概要:

从Kafka的工作原理、集群架构和应用场景三个方面对其进行深入探讨。首先,我们将介绍Kafka的基本概念和核心组件,包括Producer、Consumer、Broker等,并深入探讨其消息存储和分发机制。接着,我们将详细解析Kafka集群的架构设计,包括ZooKeeper的角色、分区和副本的管理以及故障恢复机制。最后,我们将探讨Kafka在大数据领域的应用场景,包括实时日志处理、数据管道和ETL、实时推荐系统、分布式事务处理以及流式数据处理等,并通过实际案例展示其在不同场景下的应用和价值。

1. Kafka的基本概念

在开始深入了解Kafka的工作原理之前,需要了解一些基本概念:

  • Producer(生产者): 将数据发布到Kafka主题(Topic)的应用程序。
  • Consumer(消费者): 从Kafka主题中读取数据的应用程序。
  • Broker(代理): Kafka集群中的服务器,负责存储数据和处理数据传输。
  • Topic(主题): 数据发布的类别或分区。
  • Partition(分区): 主题被分割成多个分区,每个分区在不同的服务器上。
  • Offset(偏移量): 每个消息在分区中的唯一标识。
    在这里插入图片描述

Kafka消息存储

  • Kafka的消息存储是基于日志的,每个主题被分成一个或多个分区,每个分区是一个有序的消息队列。消息被追加到分区的末尾,并且保留一段时间(可以配置)。这种设计使得Kafka能够处理大量数据,并支持高吞吐量。

生产者发布消息

  • 当生产者发送消息到Kafka时,它们首先连接到Kafka集群的一个Broker,并根据特定的分区策略将消息发布到一个或多个主题中的分区。生产者可以选择指定消息的键,这样消息将被发送到特定的分区,或者Kafka将基于负载均衡策略自动选择分区。

消费者消费消息

  • 消费者从Kafka订阅一个或多个主题,并且会被分配到每个主题的一个或多个分区。消费者定期轮询Kafka Broker,拉取新的消息。一旦消费者拉取到消息,它们就会处理这些消息,并提交偏移量来记录自己的消费位置。

Kafka的水平扩展性

  • Kafka通过分区和复制来实现水平扩展性和高可用性。分区允许数据水平分布在集群中的多个Broker上,从而允许Kafka处理大量数据。同时,Kafka通过复制每个分区到多个Broker上来提供容错性和可靠性。

2.Kafka集群组件

在这里插入图片描述

一个典型的Kafka集群包含以下组件:

  • ZooKeeper:
    ZooKeeper是一个分布式协调服务,Kafka依赖它来进行集群管理和领导者选举。ZooKeeper保存了Kafka集群的元数据(如主题、分区、副本分配等),并且监控Kafka Broker的健康状态。
  • Broker:
    Broker是Kafka集群中的服务器节点,负责存储和处理数据。每个Broker都是一个独立的Kafka服务器,它们共同组成了整个Kafka集群。
  • Topic:
    Topic是消息发布的类别或分区。在集群中,每个Topic都被分成一个或多个分区,这些分区分布在不同的Broker上。
  • Partition:
    Partition是Topic的子集,每个分区都是一个有序的消息队列。分区允许数据在多个Broker上进行并行处理,从而提高了吞吐量和可扩展性。

Kafka集群工作原理

  • 启动:
    当Kafka Broker启动时,它会向ZooKeeper注册自己的信息,包括主机名、端口号等。ZooKeeper会维护所有Broker的信息,并监控它们的健康状态。
  • 元数据管理:
    ZooKeeper保存了Kafka集群的元数据,包括Topic、分区、副本分配等信息。这些元数据被用来协调Broker之间的消息路由和复制。
  • Leader-Follower模式:
    对于每个分区,Kafka会选举出一个Broker作为Leader,并将其他Broker设置为Follower。Leader负责处理所有的读写请求,而Follower则负责复制Leader的数据。当Leader失效时,ZooKeeper会协助选举新的Leader。
  • 消息发布和消费:
    生产者将消息发布到指定的Topic,Kafka根据分区策略将消息分配到各个分区中。消费者从Topic订阅消息,并根据分配的分区拉取数据。Kafka会保证消息的顺序性和一致性,以及消费者的负载均衡。
  • 水平扩展:
    Kafka通过增加Broker节点和分区来实现水平扩展。每个Broker负责处理一部分数据和请求,从而提高了集群的吞吐量和容量。

Kafka集群的可靠性和容错性

  • 副本复制:
    每个分区都有多个副本,它们分布在不同的Broker上。当Leader失效时,Kafka会自动选择一个副本作为新的Leader,从而保证数据的可用性。
  • ISR机制:
    Kafka使用ISR(In-Sync Replicas)机制来确保副本之间的一致性。只有处于ISR中的副本才会被选举为新的Leader,这样可以防止数据丢失和不一致。
  • 故障恢复:
    当Broker或者分区发生故障时,Kafka会自动进行故障恢复,包括重新选举Leader和同步数据等操作。

3.Kafka在大数据的应用场景

在这里插入图片描述

实时日志处理

  • 实时日志处理是Kafka的一个典型应用场景。许多大型互联网企业和在线服务需要实时收集、处理和分析海量日志数据,以监控系统运行状况、进行故障排查和提供用户行为分析等功能。Kafka作为一个高吞吐量、低延迟的消息队列,可以用来收集和传输日志数据,同时支持流式处理引擎(如Apache Spark、Apache Flink等)进行实时分析和计算。

数据管道和ETL

  • Kafka常用于构建数据管道和ETL(Extract, Transform,Load)流程,用于将数据从源系统提取、转换和加载到目标系统中。例如,一个企业可能需要将来自各种数据源(如数据库、日志文件、传感器等)的数据集成到一个数据湖或数据仓库中,以支持数据分析和决策制定。Kafka可以作为数据管道的中间件,用来传输和缓存数据,并保证数据的可靠性和一致性。

实时推荐系统

  • 实时推荐系统需要快速响应用户行为,并向用户推荐个性化的内容或产品。Kafka可以用来收集和分析用户行为数据,并将结果传输给推荐算法模型进行实时计算和推荐。通过结合Kafka与实时计算引擎(如Apache Storm、Apache Samza等),可以实现高效的实时推荐服务,提升用户体验和业务价值。

分布式事务处理

  • Kafka提供了分布式事务支持,可以用来实现分布式系统中的事务性消息处理。这在金融领域、电子商务等需要确保数据一致性和可靠性的场景中尤为重要。通过Kafka的事务功能,可以实现跨多个服务和系统的原子性操作,确保数据的完整性和一致性。

流式数据处理

  • Kafka与流式处理引擎(如Apache Kafka Streams、Apache Flink等)的集成,可以实现实时数据流的处理和分析。这对于实时监控、实时预测和实时反馈等场景非常有用,例如智能工厂的实时生产监控、智能交通的实时流量调度等。

Kafka的局限性

  • 复杂性:Kafka的分布式特性、多种配置和调优参数使得设置、维护和操作变得复杂。
  • 有限的数据保留:Kafka并不是为长期数据存储而设计的。其主要功能是实时数据处理和消息传递。
  • 有限的查询能力:与数据库不同,Kafka不支持查询能力。它只是一个消息传递系统。
  • 缺乏完整的安全措施:Kafka缺乏某些安全功能,例如基于角色的访问控制,并且缺乏一些更高级的安全功能。

扩展阅读:
kafka官方手册

相关文章:

解析Apache Kafka:在大数据体系中的基本概念和核心组件

关联阅读博客文章:探讨在大数据体系中API的通信机制与工作原理 关联阅读博客文章:深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章:深度剖析:计算机集群在大数据体系中的关键角色和技术要点 关联阅读博客文章&a…...

独角数卡对接码支付收款教程

1、到码支付后台找到支付配置。2、将上面的复制依次填入,具体看下图,随后点立即添加 商户ID商户PID 商户KEY异步不能为空 商户密钥商户密钥...

vuepress-theme-hope 添加谷歌统计代码

最近做了个网站,从 cloudflare 来看访问量,过去 30 天访问量竟然有 1.32k 给我整懵逼了,我寻思不应该呀,毕竟这个网站内容还在慢慢补充中,也没告诉别人,怎么就这么多访问?搜索了下, cloudflare 还会把爬虫的请求也就算进来,所以数据相对来说就不是很准确 想到了把 Google An…...

LabVIEW太赫兹波扫描成像系统

LabVIEW太赫兹波扫描成像系统 随着科技的不断发展,太赫兹波成像技术因其非电离性、高穿透性和高分辨率等特点,在生物医学、材料质量无损检测以及公共安全等领域得到了广泛的应用。然而,在实际操作中,封闭性较高的信号采集软件限制…...

什么是stable diffusion?

🌟 Stable Diffusion:一种深度学习文本到图像生成模型 🌟 Stable Diffusion是2022年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像。它还可以应用于其他任务,如内补绘制、外补绘制&#xff0…...

KeyguardClockSwitch的父类

KeyguardClockSwitch 定义在KeyguardStatusView中, mClockView findViewById(R.id.keyguard_clock_container);KeyguardClockSwitch的父类为: Class Name: LinearLayout Class Name: KeyguardStatusView Class Name: NotificationPanelView Class Name: Notificat…...

Gradle系列(二):Groovy基础

Gradle系列(二):Groovy基础 本篇文章继续讲下Groovy一些基础的语法。 1:Map map与List的用法很像,只不过值是一个K:V的键值对。 下面是是Groovy中Map的定义: task testMap { def map [‘width’:1280,‘height’:1960] prin…...

PW1503限流芯片:可达3A限流,保障USB电源管理安全高效

在电源管理领域,开关的性能直接关系到设备的稳定性和安全性。今天,我们将详细解析一款备受关注的超低RDS(ON)开关——PW1503。它不仅具有可编程的电流限制功能,还集成了多项保护机制,为各类电子设备提供了高…...

深挖苹果Find My技术,伦茨科技ST17H6x芯片赋予产品功能

苹果发布AirTag发布以来,大家都更加注重物品的防丢,苹果的 Find My 就可以查找 iPhone、Mac、AirPods、Apple Watch,如今的Find My已经不单单可以查找苹果的设备,随着第三方设备的加入,将丰富Find My Network的版图。产…...

Web3 革命:揭示区块链技术的全新应用

随着数字化时代的不断发展,区块链技术作为一项颠覆性的创新正在改变着我们的世界。而在这一技术的进步中,Web3正逐渐崭露头角,为区块链技术的应用带来了全新的可能性。本文将探讨Web3革命所揭示的区块链技术全新应用,并展望其未来…...

[实战经验]Mybatis的mapper.xml参数#{para}与#{para, jdbcType=BIGINT}有什么区别?

在MyBatis框架中,传入参数使用#{para}和#{para, jdbcTypeBIGINT}的有什么区别呢? #{para}:这种写法表示使用MyBatis自动推断参数类型,并根据参数的Java类型自动匹配数据库对应的类型。例如,如果参数para的Java类型是Lo…...

高并发下的linux优化

针对高并发服务,对 Linux 内核和网络进行优化可以提高系统的性能和稳定性。本文将深入探讨如何对 Linux 内核和网络进行优化,包括调整内核参数、调整网络性能参数、使用 TCP/IP 协议栈加速技术、下面将介绍一些可用于优化Linux内核和网络的技术&#xff…...

不同设备使用同一个Git账号

想要在公司和家里的电脑上用同一个git账号来pull, push代码 1. 查看原设备的用户名和邮箱 第1种方法, 依次输入 git config user.name git config user.email第2种方法, 输入 cat ~/.gitconfig2. 配置新设备的用户名和邮箱 用户名和邮箱与原设备保持…...

蓝桥杯算法题:区间移位

题目描述 数轴上有n个闭区间&#xff1a;D1,...,Dn。 其中区间Di用一对整数[ai, bi]来描述&#xff0c;满足ai < bi。 已知这些区间的长度之和至少有10000。 所以&#xff0c;通过适当的移动这些区间&#xff0c;你总可以使得他们的“并”覆盖[0, 10000]——也就是说[0, 100…...

提取word文档里面的图片

大家好&#xff0c;我是阿赵。   阿赵我写博客的时候的习惯是&#xff0c;先用word文档写好&#xff0c;然后再把word文档里面的图片另存&#xff0c;最后再在博客里面复制正文和上传图片。   而我写的文章一般配图都比较多&#xff0c;所以经常要做的一个功能就是另存图片…...

MybatisPlus总结

一、MyBatis回顾 &#xff08;1&#xff09;什么是MyBatis&#xff1a;MyBatis 是一款优秀的持久层框架&#xff0c;它支持定制化 SQL、存储过程以及高级映射。MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解来配置和映…...

使用 mitmproxy 抓包 grpc

昨天在本地执行 grpc 的 quick start&#xff08;python版本的&#xff09;&#xff0c;我了解 grpc 内部使用的是 HTTP2&#xff0c;所以我就想着抓包来试试&#xff0c;下面就来记录一下这个过程中的探索。 注意&#xff1a;我的电脑上面安装了 Fiddler Classic&#xff0c;…...

【解决Jetson Nano 内存不足问题】纯命令行将 Conda 环境迁移到 SD 卡

前言 Jetson Nano 板载只有 16GB 的存储空间&#xff0c;在安装完 Ubuntu 和 Conda 环境后&#xff0c;剩余空间就捉襟见肘了&#xff0c;无法满足安装 PyTorch 等大型包的需求。此时如果你有一张SD卡&#xff0c;那么可以考虑将 Conda 环境迁移到 SD 卡上。 但网上的教程基本…...

【RISC-V 指令集】RISC-V 向量V扩展指令集介绍(七)- 向量算术指令格式

1. 引言 以下是《riscv-v-spec-1.0.pdf》文档的关键内容&#xff1a; 这是一份关于向量扩展的详细技术文档&#xff0c;内容覆盖了向量指令集的多个关键方面&#xff0c;如向量寄存器状态映射、向量指令格式、向量加载和存储操作、向量内存对齐约束、向量内存一致性模型、向量…...

顺序表的应用

文章目录 目录1. 基于动态顺序表实现通讯录项目2.顺序表经典算法2.1 [移除元素](https://leetcode.cn/problems/remove-element/description/)2.2 [合并两个有序数组](https://leetcode.cn/problems/merge-sorted-array/description/) 3. 顺序表的问题及思考 目录 基于动态顺序…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...