当前位置: 首页 > news >正文

子集(迭代)(leetcode 78)

核心逻辑:

根据子数组包含的元素个数迭代:

现有子集的基础上通过添加这个新元素来翻倍子集的数量        f(n)=2×f(n−1)

    vector<vector<int>> subsets(vector<int>& nums) {vector<vector<int>> ans;int i,j,k;ans.push_back({});for(i = 0; i < nums.size(); i++){k = ans.size();for(j = 0; j < k; j++){vector<int> e = ans[j];e.push_back(nums[i]);ans.push_back(e);}}return ans;}

相关文章:

子集(迭代)(leetcode 78)

核心逻辑&#xff1a; 根据子数组包含的元素个数迭代&#xff1a; 现有子集的基础上通过添加这个新元素来翻倍子集的数量 f(n)2f(n−1) vector<vector<int>> subsets(vector<int>& nums) {vector<vector<int>> ans;int i,j,k;ans.p…...

汽车疲劳测试试验平台技术要求(北重厂家)

汽车疲劳测试试验平台技术要求通常包括以下几个方面&#xff1a; 车辆加载能力&#xff1a;测试平台需要具备足够的承载能力&#xff0c;能够同时测试多种车型和不同重量的车辆。 动力系统&#xff1a;测试平台需要具备稳定可靠的动力系统&#xff0c;能够提供足够的力和速度来…...

Redis -- 缓存雪崩问题

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机&#xff0c;导致大量请求到达数据库&#xff0c;带来巨大压力。 可能原因 : 同一时间大量的key到期 ; 解决方案&#xff1a; 给不同的Key的TTL添加随机值 利用Redis集群提高服务的可用性 给缓存业务添加降…...

【ARM 嵌入式 C 文件操作系列 20 -- 文件删除函数 remove 详细介绍】

请阅读【嵌入式开发学习必备专栏 】 文章目录 文件删除函数 remove 文件删除函数 remove 在 C 语言中&#xff0c; 可以使用 remove 函数来删除一个文件&#xff0c;但在删除之前 可能想确认该文件是否存在。 可以使用 stat 函数来检查文件是否存在。 以下是如何实现这个功能…...

LeetCode刷题之31.下一个排列

文章目录 1. 题目2.分析3.解答3.1 先排序&#xff0c;后交换3.2 先交换&#xff0c;后排序 1. 题目 整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。 例如&#xff0c;arr [1,2,3] &#xff0c;以下这些都可以视作 arr 的排列&#xff1a;[1,2,3]、[1,3,2]、[3…...

【RISC-V 指令集】RISC-V 向量V扩展指令集介绍(九)- 向量定点算术指令

1. 引言 以下是《riscv-v-spec-1.0.pdf》文档的关键内容&#xff1a; 这是一份关于向量扩展的详细技术文档&#xff0c;内容覆盖了向量指令集的多个关键方面&#xff0c;如向量寄存器状态映射、向量指令格式、向量加载和存储操作、向量内存对齐约束、向量内存一致性模型、向量…...

【Java网络编程】IP网络协议与TCP、UDP网络传输层协议

1.1、IP协议 当应用层的数据被封装后&#xff0c;想要将数据在网络上传输&#xff0c;数据究竟要被发往何处&#xff0c;又该如何精准的在网络上定位目标机器&#xff0c;此时起到关键作用的就是“IP协议”。IP协议的作用在于把各种数据包准确无误的传递给目标方&#xff0c;其…...

C# 分布式自增ID算法snowflake(雪花算法)

文章目录 1. 概述2. 结构3. 代码3.1 IdWorker.cs3.2 IdWorkerTest.cs (测试) 1. 概述 分布式系统中&#xff0c;有一些需要使用全局唯一ID的场景&#xff0c;这种时候为了防止ID冲突可以使用36位的UUID&#xff0c;但是UUID有一些缺点&#xff0c;首先他相对比较长&#xff0c…...

commonJS和esModule的应用

commonJS commonJS规范的核心变量是&#xff1a;exports&#xff0c;module.exports&#xff0c;require exports 和 module.exports可以负责模块的导出require 负责模块的导入 module.exports 导出方案&#xff1a; const name yx const age 18// 1 导出方案 module.exp…...

(十一)RabbitMQ及SpringAMQP

1.初识MQ 1.1.同步和异步通讯 微服务间通讯有同步和异步两种方式&#xff1a; 同步通讯&#xff1a;就像打电话&#xff0c;需要实时响应。 异步通讯&#xff1a;就像发邮件&#xff0c;不需要马上回复。 两种方式各有优劣&#xff0c;打电话可以立即得到响应&#xff0c;…...

STM32 M3内核寄存器概念

内容主要来自<<M3内核权威指南>> 汇编程序中的最低有效位&#xff08;Least Significant Bit&#xff09;。LSB是二进制数中最右边的位&#xff0c;它代表了数值中的最小单位。在汇编程序中&#xff0c;LSB通常用于表示数据的最小精度或者作为标志位。 ---------…...

SQL语句的编写

##创建用户-建表建库 #创建一个用户名为 feng&#xff0c;允许从任何主机 % 连接&#xff0c;并使用密码 sc123456 进行身份验证的用户。 rootTENNIS 16:33 scmysql>create user feng% identified by sc123456; Query OK, 0 rows affected (0.04 sec) #创建一个名为fen…...

Lecture 1~3 About Filter

文章目录 空间域上的滤波器- 线性滤波器盒状滤波器Box Filter锐化Sharpening相关运算 vs. 卷积运算 Correlation vs. Convolution - 非线性滤波器高斯滤波器Gaussian filter - 实际问题- 纹理texture 频域上的滤波器 滤波的应用- 模板匹配- 图像金字塔 空间域上的滤波器 图像…...

配置vscode链接linux

1.安装 remote SSH 2.按F1 ssh ljh服务器公网ip 3. 选择保存远端host到本地 某位置 等待片刻后 4. 切换到远程资源管理器中 应该可以看到一台电脑&#xff0c;右键在当前窗口链接&#xff0c;输入你的服务器用户密码后电脑变绿说明远程连接成功 5.一定要登陆上云服务器后再…...

论文阅读——MVDiffusion

MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion 文生图模型 用于根据给定像素到像素对应关系的文本提示生成一致的多视图图像。 MVDiffusion 会在给定任意每个视图文本的情况下合成高分辨率真实感全景图像&#xff0c;或将…...

Linux中的网络命令深度解析与CentOS实践

Linux中的网络命令深度解析与CentOS实践 在Linux系统中,网络命令是管理和诊断网络问题的关键工具。无论是网络管理员还是系统开发者,熟练掌握这些命令都是必不可少的。本文将深入探讨Linux中常用的网络命令,并以CentOS为例,展示这些命令的具体应用。 一、ping命令 ping命…...

nginx配置实例(反向代理)

目录 一、目标-反向代理实现效果 二、安装tomcat 三、配置nginx服务 四、配置反向代理 一、目标-反向代理实现效果 访问过程分析&#xff1a; 二、安装tomcat 1、安装jdk环境 新建/export/server目录 解压jdk 查看是否解压成功 配置jdk软连接 进入jdk的bin目录中&#x…...

Flutter 解决NestedScrollView与TabBar双列表滚动位置同步问题

文章目录 前言一、需要实现的效果如下二、flutter实现代码如下&#xff1a;总结 前言 最近写flutter项目&#xff0c;遇到NestedScrollView与TabBar双列表滚动位置同步问题&#xff0c;下面是解决方案&#xff0c;希望帮助到大家。 一、需要实现的效果如下 1、UI图&#xff1…...

云计算存在的安全隐患

目录 一、概述 二、ENISA云安全漏洞分析 三、云计算相关系统漏洞 3.1 概述 3.2 漏洞分析 3.2.1 Hypervisor漏洞 3.2.1.1 CVE-2018-16882 3.2.1.2 CVE-2017-17563 3.2.1.3 CVE-2010-1225 3.2.2 虚拟机漏洞 3.2.2.1 CVE-2019-14835 3.2.2.2 CVE-2019-5514 3.2.2.3 CV…...

黑翅鸢优化算法(BKA)-2024年SCI一区新算法-公式原理详解与性能测评 Matlab代码免费获取

声明&#xff1a;文章是从本人公众号中复制而来&#xff0c;因此&#xff0c;想最新最快了解各类智能优化算法及其改进的朋友&#xff0c;可关注我的公众号&#xff1a;强盛机器学习&#xff0c;不定期会有很多免费代码分享~ 目录 原理简介 一、种群初始化 二、攻击行为 三…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...