[神经网络]DETR目标检测网络
一、概述
相较于传统目标检测,DETR是一种纯端到端的网络。它不再需要NMS(非极大值抑制,用于去除多余的预测框)和生成anchor。
DETR提出了一个新的目标函数(二分图匹配),这个函数可以强制网络输出一个独一无二的预测值(没有冗余的预测框)。
二、网络结构

DETR的前向流程如上图所示:①使用一个CNN抽取图片的特征;②将这个特征拉平;③将拉平后的特征送入Transformer的encoder-decoder单元;④由decoder输出预测框的信息(出框的信息是一个超参数,原文为100)⑤利用二分图匹配的方式将Ground Truth与预测结果进行匹配,对于匹配成功的框才会进一步计算loss(没有匹配成功的框将会被标记为no object<背景类>)
1.基于集合的目标函数
DETR的输出是一个固定集合(固定数目)。为了在这些集合中找到正确的预测框,DETR采用了一个二分图匹配的方法来解决这个问题。具体做法是:将n个预测框和x个Ground Turth构建成一个cost matrix(代价矩阵),通过算法在其中找出代价最小的排列。


矩阵中的内容为损失函数(分类Loss和框体Loss),公式即可写为:

这个公式的意义是:在二分图匹配的基础上计算两个loss(分类Loss和框体Loss),其中对于第一个loss,由于要与第二个loss取值范围一致,其log被去除且实验表明并不会影响结果;对于第二个loss,由于L1-Loss会对大物体敏感,所以采用generalized iou loss来计算(与物体大小无关)。
2.整体网络框架

①默认图片输入大小为1066x800x3,经过卷积网络提取特征,得到输出2048x25x34;然后经过一个1x1卷积进行通道调整(降维)得到256x25x34。
②将特征拉平(850*256),并为其叠加位置编码(256x25x34)
③将序列输入Encoder中,计算自注意力
④将结果输入Decoder,进行解码输出;这里引入一个object query(一个可学习,维度为100*256),在每个decoder会先做一次object query的自注意力操作用于移除冗余框(第一个decoder可以不做)
⑤将特征输入检测头(FFN-MLP),进行预测。
三、代码

出自原文的DETR42最简结构
相关文章:
[神经网络]DETR目标检测网络
一、概述 相较于传统目标检测,DETR是一种纯端到端的网络。它不再需要NMS(非极大值抑制,用于去除多余的预测框)和生成anchor。 DETR提出了一个新的目标函数(二分图匹配),这个函数可以强制网络输出一个独一无二的预测值&…...
【服务器管理】connection refused问题解决
简述 在配置服务器的时候,遇到了这个问题。我当时明明已经搭建好了服务,但是我在客户端比如手机上,却怎么都连不上服务器。看日志的话显示的是connection refuesed timeout 这种情况,大概率是服务器的端口没有被打开。 我们只需…...
2023_华为OD机试真题_Python_047_整理扑克牌
整理扑克牌 题目描述 给定一组数字,表示扑克牌的牌面数字,忽略扑克牌的花色,请按如下规则对这一组扑克牌进行整理: 步骤1. 对扑克牌进行分组,形成组合牌,规则如下: 当牌面数字相同张数大于等于4时,组合牌为“炸弹”;3张相同牌面数字 + 2张相同牌面数字,且3张牌与2…...
吐血整理,自动化测试pytest测试框架,资深测试带你少走弯路......
目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 Pytest框架详解 py…...
SAP BASE64加密及解密
简介:BASE64是一种编码方法,它是一种基于用64个可打印字符来表示二进制数据的表示方法,主要应用于数据存储,传输,打印它是用64个可打印字符表示二进制所有数据方法。由于2的6次方等于64,所以可以用每6个位元…...
【页面无响应】Web页面经常无响应前端如何定位与优化(已解決)
【写在前面】客户现场应用我们的系统时候,发现用着用着就出现1个页面无响应现象,给客户带来极其不好的体验,尤其是当重要工作汇报演示时,就给我看无响应,浏览器崩溃?这样对产品的发展无疑是致命的伤&#x…...
隐私计算 FATE - 多分类神经网络算法测试
一、说明 本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测。 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种 (0 或者 1)…...
Codeforces Round 853 (Div. 2)
Codeforces Round 853 (Div. 2) C. Serval and Toxels Arrays 思路: 求任意两个组合的元素个数。 注意到,其实每个元素都是独立的。他在任意组合的出现情况组成的贡献是可以分开讨论的。我们讨论元素x。假设x在m1个数组中出现了cnt次(一个…...
Ka频段需要更多带宽?
随着全球连接需求的增长,许多卫星通信(satcom)系统日益采用Ka频段,对数据速率的要求也水涨船高。目前,高性能信号链已经能支持数千兆瞬时带宽,一个系统中可能有成百上千个收发器,超高吞吐量数据速率已经成为现实。 另…...
初学pyinstaller打包过程中的一些问题
记录一下使用pyinstaller打包过程中的一些问题: 不安装虚拟环境打包,直接打包,一般不会出现什么问题,但是打包的exe很大,把所有模块和依赖库也一起打包了。 建议使用虚拟环境打包,安装必要的包࿰…...
第七章:Java常用类
第七章:Java常用类 7.1:字符串相关的类 String的特性 String表示是字符串,使用一对""引起来表示。 String声明为final的,不可被继承。 String实现了Serializable、Comparable接口,表示字符是支持序列化和…...
Apk加固后多渠道打包
之前一直使用360加固宝进行apk的加固打包,可以一键加固并打多渠道打包。但是,现在360加固宝收费了,在进行加固,多渠道打包,就得一步一步自己操作了,会很繁琐。所以,本文使用 360加固美团Wallet …...
K8S + ISTIO 金丝雀部署的例子
金丝雀发布(Canary):也是一种发布策略,和国内常说的灰度发布是同一类策略。蓝绿部署是准备两套系统,在两套系统之间进行切换,金丝雀策略是只有一套系统,逐渐替换这套系统。 Istio 提供一种简单的…...
python自带数据的模型合集
鸢尾花----聚类 Python鸢尾花数据集通常用于分类问题, 这些模型都可以通过Python中的Scikit-learn库进行实现。同时,也可以对这些模型进行参数调优以提高模型的准确性。 Logistic Regression(逻辑回归): 逻辑回归是一…...
女生学习大数据怎么样~有前景么
当前大数据发展前景非常不错,且大数据领域对于人才类型的需求比较多元化,女生学习大数据也会有比较多的工作机会。大数据是一个交叉学科涉及到的知识量比较大学习有一定的难度,女生则有女生的优势,只要认真学习了都是可以做大数据…...
统计代码量
一 windows 在 Windows 系统上,您可以使用 PowerShell 命令行工具来统计项目的代码量。下面是使用 PowerShell 统计项目代码量的步骤: 打开 PowerShell 终端:按下 Win X 键,选择「Windows PowerShell(管理员…...
uniapp在线升级关联云空间
升级中心 uni-upgrade-center - App: https://ext.dcloud.net.cn/plugin?id4542 App升级中心 uni-upgrade-center文档: https://uniapp.dcloud.net.cn/uniCloud/upgrade-center.html#uni-upgrade-center-app 升级中心 uni-upgrade-center - Admin&#…...
学习streamlit-2
首先视频快速预览下今天的学习内容: Streamlit Shorts: How to make a button今天继续学习streamlit,首先激活之前建立的虚拟环境: ❯ conda activate streamlit-env (streamlit-env) ~ via 🐍 v3.9.16 via …...
Vscode中Vue文件保存格式化、 ElementUI、Font Awesome俩大插件使用
Vscode中Vue文件老一片红色出现格式错误??如何运行别人的项目(没有node_modules文件)??选用组件与图标?? 解决问题一 前提有:Prettier ESLint插件、ESLint插件 1.打开s…...
汽车标定知识整理(三):CCP报文可选命令介绍
目录 一、可选命令 CRO命令报文的可选命令表: 二、可选命令帧格式介绍 1、GET_SEED——获取被请求资源的种子(0x12) 2、UNLOCK——解锁保护(0x13) 3、SET_S_STATUS——设置Session状态(0x0C࿰…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
