当前位置: 首页 > news >正文

Kubernetes(k8s)监控与报警(qq邮箱+钉钉):Prometheus + Grafana + Alertmanager(超详细)

Kubernetes(k8s)监控与报警(qq邮箱+钉钉):Prometheus + Grafana + Alertmanager(超详细)

  • 1、部署环境
  • 2、基本概念简介
    • 2.1、Prometheus简介
    • 2.2、Grafana简介
    • 2.3、Alertmanager简介
    • 2.4、Prometheus + Grafana+Alertmanager监控架构
  • 3、Prometheus部署
    • 3.1 创建命名空间
    • 3.2 创建服务账户
    • 3.3 授权服务账户RBAC权限
    • 3.4 创建数据目录
    • 3.5 创建Configmap存储卷
    • 3.6 通过Deployment 部署Prometheus
    • 3.7 为prometheus Pod 创建一个service 实现四层代理
  • 4、Node-Exporter部署
    • 4.1、创建一个Node-Exporter 的YAML文件描述Deployment资源
    • 4.2、应用配置文件
    • 4.3、验证Node-Exporter是否部署成功
    • 4.4、问题排查:Node-Exporter没有调度到(k8s-master)
    • 4.5、Node-Exporter 的应用案例
  • 5、Grafana部署
    • 5.1、创建一个Grafana的YAML文件描述Deployment资源
    • 5.2、应用配置文件
    • 5.3、验证grafana部署
    • 5.4、配置grafana接入prometheus 数据源
    • 5.5、导入监控模板
  • 6、Alertmanager部署
    • 6.1、部署Altermanager发送qq邮箱报警
      • 6.1.1、开启 163邮箱:IMAP/SMTP服务
      • 6.1.2、获取授权密码
      • 6.1.3、配置 Alertmanager
      • 6.1.4、应用配置到k8s集群
      • 6.1.5、创建prometheus和告警规则配置文件
      • 6.1.6、部署prometheus和altermanager
      • 6.1.7、通过deployment部署prometheus和altermanager
      • 6.1.8、创建altermanager前端service,方便浏览器访问
      • 6.1.9、部署完成后,有关问题解决
      • 6.1.10、邮箱收取告警信息-测试
    • 6.2、部署altermanager发送报警到钉钉群
      • 6.1、创建钉钉机器人--电脑版钉钉
      • 6.2、控制节点安装webhook插件
      • 6.3、钉钉收取告警信息-验证
  • 7、总结:


💖The Begin💖点点关注,收藏不迷路💖

Kubernetes是一个高度动态的容器编排平台,管理着大量的容器化应用程序。

为了保证这些应用程序的稳定性和性能,我们需要实施有效的监控和警报机制。在这篇文章中,我们将介绍如何使用Prometheus和Grafana构建一个完整的Kubernetes监控与报警系统。

在这里插入图片描述

Kubernetes集群架构图

1、部署环境

1、k8s控制节点:

IP:192.168.234.20,主机名:k8s-master。

2、使用 kubeadm 部署的 Kubernetes 集群

3、k8s工作节点:

IP:192.168.234.21,主机名:k8s-node01。
IP:192.168.234.22,主机名:k8s-node02。

4、docker版本V 20.10.7

[root@k8s-master ~]# docker --version
Docker version 20.10.7, build f0df350
[root@k8s-master ~]# 

5、kubelet 版本V1.21.13

[root@k8s-master ~]# kubeadm version
kubeadm version: &version.Info{Major:"1", Minor:"21", GitVersion:"v1.21.13", GitCommit:"80ec6572b15ee0ed2e6efa97a4dcd30f57e68224", GitTreeState:"clean", BuildDate:"2022-05-24T12:39:27Z", GoVersion:"go1.16.15", Compiler:"gc", Platform:"linux/amd64"}
[root@k8s-master ~]# 

6、操作系统版本7.9

[root@k8s-master ~]# cat /etc/redhat-release 
CentOS Linux release 7.9.2009 (Core)
[root@k8s-master ~]# 

2、基本概念简介

2.1、Prometheus简介

Prometheus是一个开源的系统监控和警报工具包,最初由SoundCloud开发。它具有多维数据模型、强大的查询语言(PromQL)、灵活的警报机制和可靠的数据存储。Prometheus通过HTTP协议定期拉取目标的数据,并将数据存储在本地时间序列数据库中。

在这里插入图片描述

Prometheus简介(来源于网络)

2.2、Grafana简介

Grafana是一个开源的数据可视化和监控平台,它支持多种数据源,包括Prometheus、InfluxDB、Elasticsearch等。Grafana提供了丰富的可视化工具和仪表板编辑器,帮助用户创建漂亮而功能强大的监控仪表板。

2.3、Alertmanager简介

Alertmanager是Prometheus的一部分,用于处理警报通知。它可以根据定义的规则对Prometheus收集的监控数据进行分析,并触发警报。Alertmanager还支持多种通知方式,包括电子邮件、Slack、PagerDuty等,可以根据不同的场景和严重性级别配置警报通知策略。

2.4、Prometheus + Grafana+Alertmanager监控架构

Prometheus Server:负责定期从目标中拉取指标数据,并将数据存储在本地时间序列数据库中。

Prometheus Alertmanager:负责处理警报规则并发送通知。

Grafana Server:用于创建、查看和共享监控仪表板。

Kubernetes集成:使用Prometheus的Kubernetes SD(Service Discovery)来自动发现和监视Kubernetes中的服务和Pod。

在这里插入图片描述

prometheus监控流程图(来源于网络)

3、Prometheus部署

3.1 创建命名空间

Kubernetes中的命名空间提供了一种组织和管理集群资源的机制,可以实现资源的逻辑隔离、权限控制、资源管理、环境隔离等功能,有助于提高集群的安全性、可管理性和可观察性。

kubectl create namespace monitor-sa或者kubectl create ns monitor-sa

在这里插入图片描述

3.2 创建服务账户

创建服务账户在Kubernetes中是为了实现身份认证、授权访问、安全隔离、跟踪和监控以及与其他服务集成等功能。合理使用服务账户可以提高集群的安全性、可管理性和可观察性,确保工作负载之间的安全通信和权限控制。

kubectl create serviceaccount monitor -n monitor-samonitor: 指定要创建的服务账户的名称为 monitor。
-n monitor-sa: 指定将服务账户创建在名为 monitor-sa 的命名空间中。

在这里插入图片描述

3.3 授权服务账户RBAC权限

kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor

或者通过以下步骤(跳过):

1、创建一个用于创建服务账户、配置 RBAC 权限并授权给 Prometheus Pod 的 YAML 文件。

vim prometheus-rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:name: monitornamespace: monitor-sa---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:name: monitor-clusterrolebinding
subjects:
- kind: ServiceAccountname: monitornamespace: monitor-sa
roleRef:kind: ClusterRolename: cluster-adminapiGroup: rbac.authorization.k8s.io

2、并使用以下命令将其应用到集群中:

kubectl apply -f prometheus-rbac.yaml

在这里插入图片描述

3.4 创建数据目录

为了数据持久化,控制节点默认是存在污点的,不会调度Pod,所以在node01工作节点创建数据存目录,调度到node01。

sudo mkdir /datasudo chmod 777 /data

在这里插入图片描述

3.5 创建Configmap存储卷

并使用以下命令将其应用到集群中:

vim prometheus-cfg.yamlkubectl apply -f prometheus-cfg.yaml

在这里插入图片描述

最终完整的prometheus-cfg.yaml配置文件,内容如下:

kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: monitor-sa
data:prometheus.yml: |global:scrape_interval: 15sscrape_timeout: 10sevaluation_interval: 1mscrape_configs:- job_name: 'kubernetes-node'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace- action: labelmapregex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'kubernetes_sd_configs:- role:  nodescheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- action: labelmapregex: __meta_kubernetes_node_label_(.+)- target_label: __address__replacement: kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name]regex: (.+)target_label: __metrics_path__replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpointsscheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]action: keepregex: default;kubernetes;https- job_name: 'kubernetes-service-endpoints'kubernetes_sd_configs:- role: endpointsrelabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2- action: labelmapregex: __meta_kubernetes_service_label_(.+)- source_labels: [__meta_kubernetes_namespace]action: replacetarget_label: kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]action: replacetarget_label: kubernetes_name

配置详解:

kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: monitor-sa
data:prometheus.yml: |   # 用于配置 Prometheus 的全局设置和抓取配置global:   # 全局配置scrape_interval: 15s   # 抓取间隔为每15秒scrape_timeout: 10s    # 单次抓取超时时间为10秒evaluation_interval: 1m   # 指标评估间隔为每1分钟scrape_configs:   # 抓取配置列表- job_name: 'kubernetes-node'   # 任务名称为 'kubernetes-node',用于监控 Kubernetes 节点kubernetes_sd_configs:   # 使用 Kubernetes 服务发现配置- role: node   # 角色为节点relabel_configs:   # 重标签配置- source_labels: [__address__]   # 源标签为 __address__regex: '(.*):10250'   # 使用正则表达式匹配地址端口为10250replacement: '${1}:9100'   # 替换为端口9100target_label: __address__   # 目标标签为 __address__action: replace   # 替换操作- action: labelmap   # 标签映射操作,动态生成标签regex: __meta_kubernetes_node_label_(.+)   # 匹配节点标签- job_name: 'kubernetes-node-cadvisor'   # 任务名称为 'kubernetes-node-cadvisor',用于监控 Kubernetes 节点的 cAdvisor 指标kubernetes_sd_configs:   # 使用 Kubernetes 服务发现配置- role:  node   # 角色为节点scheme: https   # 使用 HTTPS 访问节点tls_config:   # TLS 配置ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt   # CA 证书路径bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token   # 令牌路径relabel_configs:   # 重标签配置- action: labelmap   # 标签映射操作,动态生成标签regex: __meta_kubernetes_node_label_(.+)   # 匹配节点标签- target_label: __address__   # 目标标签为 __address__replacement: kubernetes.default.svc:443   # 替换为 Kubernetes 默认服务地址- source_labels: [__meta_kubernetes_node_name]   # 源标签为节点名称regex: (.+)   # 匹配所有字符target_label: __metrics_path__   # 目标标签为 __metrics_path__replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor   # 替换为 cAdvisor 指标路径- job_name: 'kubernetes-apiserver'   # 任务名称为 'kubernetes-apiserver',用于监控 Kubernetes API 服务器kubernetes_sd_configs:   # 使用 Kubernetes 服务发现配置- role: endpoints   # 角色为端点scheme: https   # 使用 HTTPS 访问端点tls_config:   # TLS 配置ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt   # CA 证书路径bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token   # 令牌路径relabel_configs:   # 重标签配置- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]   # 源标签为命名空间、服务名称和端口名称action: keep   # 保留标签regex: default;kubernetes;https   # 匹配默认命名空间、Kubernetes 服务和 HTTPS 端口- job_name: 'kubernetes-service-endpoints'   # 任务名称为 'kubernetes-service-endpoints',用于监控 Kubernetes 服务端点kubernetes_sd_configs:   # 使用 Kubernetes 服务发现配置- role: endpoints   # 角色为端点relabel_configs:   # 重标签配置- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]   # 源标签为 Prometheus 抓取注解action: keep   # 保留标签regex: true   # 匹配值为 true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]   # 源标签为 Prometheus 方案注解action: replace   # 替换操作target_label: __scheme__   # 目标标签为 __scheme__regex: (https?)   # 匹配值为 HTTP 或 HTTPS- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]   # 源标签为 Prometheus 路径注解action: replace   # 替换操作target_label: __metrics_path__   # 目标标签为 __metrics_path__regex: (.+)   # 匹配所有字符- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]   # 源标签为地址和端口注解action: replace   # 替换操作target_label: __address__   # 目标标签为 __address__regex: ([^:]+)(?::\d+)?;(\d+)   # 匹配地址和端口replacement: $1:$2   # 替换地址和端口- action: labelmap   # 标签映射操作,动态生成标签regex: __meta_kubernetes_service_label_(.+)   # 匹配服务标签- source_labels: [__meta_kubernetes_namespace]   # 源标签为命名空间action: replace   # 替换操作target_label: kubernetes_namespace   # 目标标签为 kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]   # 源标签为服务名称action: replace   # 替换操作target_label: kubernetes_name   # 目标标签为 kubernetes_name

3.6 通过Deployment 部署Prometheus

使用 Kubernetes 的节点亲和性(Node Affinity)功能。节点亲和性允许你指定节点选择标准,根据这些标准,Kubernetes 调度器会尝试将 Pod 调度到满足条件的节点上。

1、创建一个YAML文件描述Deployment资源,并包含Prometheus容器的配置。

vim prometheus-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-servernamespace: monitor-salabels:app: prometheus
spec:replicas: 1selector:matchLabels:app: prometheuscomponent: server#matchExpressions:#- {key: app, operator: In, values: [prometheus]}#- {key: component, operator: In, values: [server]}template:metadata:labels:app: prometheuscomponent: serverannotations:prometheus.io/scrape: 'false'spec:nodeName: k8s-node01	# 指定pod调度到哪个节点上	serviceAccountName: monitorcontainers:- name: prometheusimage: registry.aliyuncs.com/google_containers/prometheus:v2.2.1imagePullPolicy: IfNotPresentcommand:- prometheus- --config.file=/etc/prometheus/prometheus.yml- --storage.tsdb.path=/prometheus	# 数据存储目录- --storage.tsdb.retention=720h	# 数据保存时长- --web.enable-lifecycle	# 开启热加载ports:- containerPort: 9090protocol: TCPvolumeMounts:- mountPath: /etc/prometheus/prometheus.ymlname: prometheus-configsubPath: prometheus.yml- mountPath: /prometheus/name: prometheus-storage-volumevolumes:- name: prometheus-configconfigMap:name: prometheus-configitems:- key: prometheus.ymlpath: prometheus.ymlmode: 0644- name: prometheus-storage-volumehostPath:path: /datatype: Directory

配置详解:

apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-server   # 部署名称为 prometheus-servernamespace: monitor-sa   # 命名空间为 monitor-salabels:app: prometheus   # 标签为 app: prometheus
spec:replicas: 1   # 副本数为1selector:matchLabels:app: prometheus   # 匹配标签为 app: prometheuscomponent: server   # 匹配标签为 component: servertemplate:metadata:labels:app: prometheus   # Pod 标签为 app: prometheuscomponent: server   # Pod 标签为 component: serverannotations:prometheus.io/scrape: 'false'   # Prometheus 抓取设置为 false,不抓取该 Pod 的指标spec:nodeName: k8s-node01   # 指定将 Pod 调度到节点 k8s-node01serviceAccountName: monitor   # 使用 serviceAccountName 为 monitor 的服务账号containers:- name: prometheus   # 容器名称为 prometheusimage: registry.aliyuncs.com/google_containers/prometheus:v2.2.1   #  Prometheus 镜像imagePullPolicy: IfNotPresent   # 如果本地没有该镜像,则从远程拉取command:- prometheus   # 启动命令为 prometheus- --config.file=/etc/prometheus/prometheus.yml   # 指定配置文件路径- --storage.tsdb.path=/prometheus   # 数据存储目录路径为 /prometheus- --storage.tsdb.retention=720h   # 数据保存时长为720小时- --web.enable-lifecycle   # 开启热加载功能ports:- containerPort: 9090   # 容器监听端口为 9090protocol: TCP   # 使用 TCP 协议volumeMounts:- mountPath: /etc/prometheus/prometheus.yml   # 挂载配置文件路径name: prometheus-config   # 挂载的配置文件名称为 prometheus-configsubPath: prometheus.yml   # 挂载的子路径为 prometheus.yml- mountPath: /prometheus/   # 挂载数据存储目录路径name: prometheus-storage-volume   # 挂载的存储卷名称为 prometheus-storage-volumevolumes:- name: prometheus-config   # 配置文件卷名称为 prometheus-configconfigMap:name: prometheus-config   # 使用的 ConfigMap 名称为 prometheus-configitems:- key: prometheus.yml   # ConfigMap 中的键为 prometheus.ymlpath: prometheus.yml   # 挂载到容器中的路径为 prometheus.ymlmode: 0644   # 权限设置为 0644- name: prometheus-storage-volume   # 存储卷名称为 prometheus-storage-volumehostPath:path: /data   # 宿主机路径为 /datatype: Directory   # 类型为目录类型

2、应用Deployment YAML文件来创建部署:

kubectl apply -f prometheus-deployment.yaml

在这里插入图片描述
3、查看prometheus是否部署成功:

kubectl get pods -n monitor-sa

在这里插入图片描述

3.7 为prometheus Pod 创建一个service 实现四层代理

prometheus 在k8s 集群中创建完成后,无法在集群外部访问。可以创建一个 NodePort 类型的 Service 代理Pod。允许通过集群节点的 IP 地址和指定的端口访问 Prometheus。

1、首先,创建一个名为 prometheus-service.yaml 的配置文件,并添加以下内容:

vim prometheus-service.yaml 
apiVersion: v1
kind: Service
metadata:name: prometheusnamespace: monitor-salabels:app: prometheus
spec:type: NodePort  # 指定 Service 的类型为 NodePortports:- port: 9090  # Service 暴露的端口targetPort: 9090  # Pod 中运行的应用程序所监听的端口protocol: TCPselector:app: prometheus # 选择具有 app: prometheus 标签的 Podcomponent: server # 选择具有 component: server 标签的 Pod

2、应用配置文件

使用 kubectl apply 命令将配置文件应用到 Kubernetes 集群中:

kubectl apply -f prometheus-service.yaml

在这里插入图片描述

3、验证 Service 是否创建成功

运行以下命令来验证 Service 是否已成功创建:

kubectl get svc -n monitor-sa

在这里插入图片描述

你会看到 prometheus-service 的类型为 NodePort,它公开了端口 30766,允许外部流量访问 Prometheus 服务。

4、访问 Prometheus

现在,可以使用任何 Kubernetes 集群节点的 IP 地址和指定的 NodePort来访问 Prometheus 服务。在浏览器中访问 http://192.168.234.20:30682来访问 Prometheus。

在这里插入图片描述

在这里插入图片描述

这样,你就可以在 Kubernetes 集群外部访问 Prometheus 服务了。

4、Node-Exporter部署

Node Exporter 是 Prometheus 的一个官方组件,默认监听端口9100,用于收集系统的各种指标。它是一个独立的二进制文件,可以在需要监控的服务器上运行,以收集关于硬件、操作系统和应用程序的各种指标。这些指标包括 CPU 使用率、内存使用情况、磁盘 I/O、网络统计和许多其他系统信息。

4.1、创建一个Node-Exporter 的YAML文件描述Deployment资源

vim  node-export.yaml
apiVersion: apps/v1  # 指定使用的Kubernetes API版本。
kind: DaemonSet # 可以保证k8s集群的每个节点都运行完全一样的pod
metadata:name: node-exporter  # 资源的名称为node-exporter。namespace: monitor-sa  # 资源所属的命名空间为monitor-sa。labels:name: node-exporter  # 给资源添加了一个名为node-exporter的标签。
spec:selector:matchLabels:name: node-exporter  # 选择标签名为node-exporter的Pod。template:metadata:labels:name: node-exporter  # 给Pod添加了一个名为node-exporter的标签。spec:hostPID: true  # 指定Pod使用宿主机的PID命名空间。hostIPC: true  # 指定Pod使用宿主机的IPC命名空间。hostNetwork: true  # 指定Pod使用宿主机的网络命名空间。containers:- name: node-exporter  # 容器的名称为node-exporter。image: prom/node-exporter:v0.16.0  # 容器所使用的镜像。ports:- containerPort: 9100  # 将容器的9100端口暴露出来。resources:requests:cpu: 0.15 # 这个容器运行至少需要0.15核cpusecurityContext:privileged: true	# 开启特权模式args:- --path.procfs- /host/proc- --path.sysfs- /host/sys- --collector.filesystem.ignored-mount-points- '"^/(sys|proc|dev|host|etc)($|/)"'  # 忽略挂载点。volumeMounts:- name: devmountPath: /host/dev  # 挂载/dev目录到容器中。- name: procmountPath: /host/proc  # 挂载/proc目录到容器中。- name: sysmountPath: /host/sys  # 挂载/sys目录到容器中。- name: rootfsmountPath: /rootfs  # 挂载根文件系统到容器中。tolerations:- key: "node-role.kubernetes.io/master"operator: "Exists"effect: "NoSchedule"  # 不允许调度。volumes:- name: prochostPath:path: /proc  # 挂载主机的/proc目录。- name: devhostPath:path: /dev  # 挂载主机的/dev目录。- name: syshostPath:path: /sys  # 挂载主机的/sys目录。- name: rootfshostPath:path: /  # 挂载主机的根文件系统。

4.2、应用配置文件

使用 kubectl apply 命令将配置文件应用到 Kubernetes 集群中:

kubectl apply -f node-export.yaml

在这里插入图片描述

4.3、验证Node-Exporter是否部署成功

kubectl get pods -n monitor-sa -o wide

在这里插入图片描述

4.4、问题排查:Node-Exporter没有调度到(k8s-master)

已对前面配置文件修改,这里可跳过

在这里插入图片描述

Kubernetes 的默认配置是,Master 节点会被标记有一个污点,以防止普通的 Pod 在 Master 节点上运行。这是为了确保 Master 节点不会被普通应用程序所占用,保证集群的稳定性和安全性。因此,默认情况下,如果一个 Pod 没有设置容忍度(tolerations),它将不会被调度到具有 Master 污点的节点上。

但是,在某些情况下,可能需要在 Master 节点上运行一些特定的应用或者监控程序。在这种情况下,你可以为这些 Pod 添加容忍度(tolerations),以允许它们被调度到具有 Master 污点的节点上。

使该 DaemonSet 能够调度到默认有污点的 Kubernetes 主节点(k8s-master),可以在 tolerations 部分添加一个容忍污点的配置。具体来说,你可以添加一个容忍 master 节点的污点的容忍配置,如下所示:

在这里插入图片描述
1、查看master节点污点

显示节点(Node)的详细信息,而 grep Ta 则用于过滤显示包含 “Ta” 的行。在 Kubernetes 中,“Ta” 通常指的是污点(Taints),它们用于标记节点,以便限制哪些 Pod 可以被调度到该节点上。

[root@k8s-master k8s-monitor]#  kubectl  describe  node | grep Ta
Taints:             node-role.kubernetes.io/control-plane:NoSchedule
Taints:             <none>
Taints:             <none>
[root@k8s-master k8s-monitor]# 

2、修改node-export.yaml

vim node-export.yaml修改为实际的master污点,前面配置错了。# - key: "node-role.kubernetes.io/master"
- key: "node-role.kubernetes.io/control-plane"

在这里插入图片描述

3、重新使用 kubectl apply 命令将配置文件应用到 Kubernetes 集群中:

kubectl apply -f node-export.yaml

4、验证:

kubectl get pods -n monitor-sa -o wide

monitor-sa 中3个不同的node-exporter Pod,它们分别被调度到了三个不同的节点上运行。

在这里插入图片描述
Prometheus web ui刷新:

在这里插入图片描述

4.5、Node-Exporter 的应用案例

1、查看当前主机获取到的所有监控数据

curl http://192.168.234.21:9100/metrics

2、查看Cpu使用情况

curl http://192.168.234.21:9100/metrics | grep node_cpu_seconds

3、查看主机负载

curl http://192.168.234.21:9100/metrics | grep node_load

在这里插入图片描述

5、Grafana部署

5.1、创建一个Grafana的YAML文件描述Deployment资源

vi  grafana-pod.yaml
apiVersion: apps/v1
kind: Deployment
metadata:name: monitoring-grafana  # 部署的名称为 monitoring-grafananamespace: kube-system  # 部署在 kube-system 命名空间中
spec:replicas: 1  # 副本数量为 1selector:matchLabels:task: monitoring  # 标签选择器,选择 task: monitoring 的 Podk8s-app: grafana  # 标签选择器,选择 k8s-app: grafana 的 Podtemplate:metadata:labels:task: monitoring  # Pod 的标签 task: monitoringk8s-app: grafana  # Pod 的标签 k8s-app: grafanaspec:containers:- name: grafana  # 容器名称为 grafanaimage: registry.aliyuncs.com/google_containers/heapster-grafana-amd64:v5.0.4  # 使用的镜像(请确保有拉取了该镜像或者您有访问该镜像的权限)ports:- containerPort: 3000  # 容器监听的端口protocol: TCPvolumeMounts:- mountPath: /etc/ssl/certs  # 挂载的卷路径name: ca-certificates  # 卷的名称readOnly: true- mountPath: /var  # 挂载的卷路径name: grafana-storage  # 卷的名称env:- name: INFLUXDB_HOST  # 环境变量:InfluxDB 主机value: monitoring-influxdb- name: GF_SERVER_HTTP_PORT  # 环境变量:Grafana 服务器 HTTP 端口value: "3000"# 下面的环境变量用于通过 Kubernetes API 服务器代理访问 Grafana。# 在生产环境中,建议删除这些环境变量,为 Grafana 设置认证,并使用 LoadBalancer 或公共 IP 暴露 Grafana 服务。- name: GF_AUTH_BASIC_ENABLED  # 环境变量:启用基本认证value: "false"- name: GF_AUTH_ANONYMOUS_ENABLED  # 环境变量:启用匿名访问value: "true"- name: GF_AUTH_ANONYMOUS_ORG_ROLE  # 环境变量:匿名用户角色value: Admin- name: GF_SERVER_ROOT_URL  # 环境变量:Grafana 服务器根 URL# 如果仅使用 API 服务器代理,请设置此值:# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxyvalue: /volumes:- name: ca-certificates  # 卷的名称hostPath:path: /etc/ssl/certs  # 主机路径- name: grafana-storage  # 卷的名称emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:labels:# 用作集群附加组件 (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)# 如果不作为附加组件使用,请将此行注释掉。kubernetes.io/cluster-service: 'true'kubernetes.io/name: monitoring-grafananame: monitoring-grafana  # 服务名称为 monitoring-grafananamespace: kube-system  # 服务部署在 kube-system 命名空间中
spec:# 在生产环境中,我们建议通过外部负载均衡器或公共 IP 访问 Grafana。# type: LoadBalancer# 您也可以使用 NodePort 将服务暴露在随机生成的端口上# type: NodePortports:- port: 80  # 服务端口targetPort: 3000  # 目标端口selector:k8s-app: grafana  # 选择器选择 k8s-app: grafana 的 Podtype: NodePort  # 服务类型为 NodePort

5.2、应用配置文件

kubectl apply -f grafana-pod.yaml

在这里插入图片描述

5.3、验证grafana部署

1、查看k8s 集群所有的Service资源

kubectl get svc --all-namespaces

2、grep命令过滤grafana

kubectl get svc --all-namespaces | grep grafana

3、获取位于命名空间 kube-system 中,标签为 task=monitoring 的所有 Pod 的信息,并显示详细信息

kubectl get pods -n kube-system -l task=monitoring -o wide

在这里插入图片描述

3、访问grafana的web界面

在浏览器的地址栏中输入 URL:http://192.168.234.20:30040/。

5.4、配置grafana接入prometheus 数据源

把Prometheus 采集到的数据通过grafana可视化展示。

1、grafana界面接入prometheus 数据源

➡️ Create your first data soure

在这里插入图片描述

➡️ 填写配置信息

Name:Prometheus
Type :Prometheus

URL:http://prometheus.monitor-sa.svc:9090

在这里插入图片描述

➡️ 保存配置信息

在这里插入图片描述
在这里插入图片描述

出现Data source is working,说明Prometheus数据源成功被Grafana接入了。

5.5、导入监控模板

Grafana 的仪表盘模板页面,其中包含了各种与 Kubernetes 相关的仪表盘模板。

https://grafana.com/grafana/dashboards/?search=kubernetes

在这里插入图片描述

在这里插入图片描述

➡️ 导入监控模板

导入刚才下载的json文件。

在这里插入图片描述

🍀 模板1(监控node状态):

在这里插入图片描述

🍀 模板2(监控node状态):

在这里插入图片描述

🍀 模板3(监控容器状态):

在这里插入图片描述

6、Alertmanager部署

6.1、部署Altermanager发送qq邮箱报警

6.1.1、开启 163邮箱:IMAP/SMTP服务

在邮箱设置中找到并开启 IMAP/SMTP 服务,按照提示发送验证码进行验证。

6.1.2、获取授权密码

验证成功后,你会获得一个授权密码(复制先保存),这个密码用于通过 SMTP 服务器发送邮件。

在这里插入图片描述

6.1.3、配置 Alertmanager

编辑一个 Alertmanager 的配置文件 alertmanager-email-163cfg.yaml。

并配置它以使用 SMTP 发送邮件到你的 163 邮箱。示例配置如下:

vim alertmanager-email-163cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:name: alertmanagernamespace: monitor-sa
data:alertmanager.yml: |-                               # altermanager配置文件global:                            resolve_timeout: 1m                            smtp_smarthost: 'smtp.163.com:25'              # 发送者的SMTP服务器smtp_from: '182307****@163.com'               # 发送者的邮箱smtp_auth_username: '18230*******'              # 发送者的邮箱用户名(不是邮箱名)smtp_auth_password: 'OBGYGQJGJDUNZMKC'         # 发送者授权密码(上面获取到的)smtp_require_tls: falseroute:                                           # 配置告警分发策略group_by: [alertname]                          # 采用哪个标签作为分组依据group_wait: 10s                                # 组告警等待时间(10s内的同组告警一起发送)group_interval: 10s                            # 两组告警的间隔时间repeat_interval: 10m                           # 重复告警的间隔时间receiver: default-receiver                     # 接收者配置receivers:- name: 'default-receiver'                       # 接收者名称(与上面对应)email_configs:                                 # 接收邮箱配置- to: '4963430***@qq.com'                      # 接收邮箱(填要接收告警的邮箱)send_resolved: true                          # 是否通知已解决的告警

请确保替换示例配置中的以下内容:

‘你的发件邮箱地址’:用于发送邮件的邮箱地址,通常也是你的 163 邮箱地址。
‘你的163邮箱地址’:你的 163 邮箱地址。
‘你的163邮箱授权密码’:你在步骤 2 中获得的授权密码。
‘你的收件邮箱地址’:接收报警的邮箱地址。

6.1.4、应用配置到k8s集群

kubectl apply -f alertmanager-email-163cfg.yaml               # 应用配置

在这里插入图片描述

6.1.5、创建prometheus和告警规则配置文件

创建一个 prometheus-alertmanager-cfg.yaml 文件,用于配置 Prometheus 的 Alertmanager 的配置文件。定义不同的报警规则和如何处理这些报警的方式。

你可编辑或者下载上传:

https://download.csdn.net/download/qq_41840843/89094986

vim prometheus-alertmanager-cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: monitor-sa
data:prometheus.yml: |rule_files:- /etc/prometheus/rules.ymlalerting:alertmanagers:- static_configs:- targets: ["localhost:9093"]global:scrape_interval: 15sscrape_timeout: 10sevaluation_interval: 1mscrape_configs:- job_name: 'kubernetes-node'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace- action: labelmapregex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'kubernetes_sd_configs:- role:  nodescheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- action: labelmapregex: __meta_kubernetes_node_label_(.+)- target_label: __address__replacement: kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name]regex: (.+)target_label: __metrics_path__replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpointsscheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]action: keepregex: default;kubernetes;https- job_name: 'kubernetes-service-endpoints'kubernetes_sd_configs:- role: endpointsrelabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2- action: labelmapregex: __meta_kubernetes_service_label_(.+)- source_labels: [__meta_kubernetes_namespace]action: replacetarget_label: kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]action: replacetarget_label: kubernetes_name - job_name: kubernetes-podskubernetes_sd_configs:- role: podrelabel_configs:- action: keepregex: truesource_labels:- __meta_kubernetes_pod_annotation_prometheus_io_scrape- action: replaceregex: (.+)source_labels:- __meta_kubernetes_pod_annotation_prometheus_io_pathtarget_label: __metrics_path__- action: replaceregex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2source_labels:- __address__- __meta_kubernetes_pod_annotation_prometheus_io_porttarget_label: __address__- action: labelmapregex: __meta_kubernetes_pod_label_(.+)- action: replacesource_labels:- __meta_kubernetes_namespacetarget_label: kubernetes_namespace- action: replacesource_labels:- __meta_kubernetes_pod_nametarget_label: kubernetes_pod_name- job_name: 'kubernetes-schedule'scrape_interval: 5sstatic_configs:- targets: ['192.168.234.20:10251']- job_name: 'kubernetes-controller-manager'scrape_interval: 5sstatic_configs:- targets: ['192.168.234.20:10252']- job_name: 'kubernetes-kube-proxy'scrape_interval: 5sstatic_configs:- targets: ['192.168.234.21:10249','192.168.234.22:10249']- job_name: 'kubernetes-etcd'scheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crtcert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crtkey_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.keyscrape_interval: 5sstatic_configs:- targets: ['192.168.234.20:2379']rules.yml: |groups:- name: examplerules:- alert: kube-proxy的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  kube-proxy的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: scheduler的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  scheduler的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: controller-manager的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  controller-manager的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: apiserver的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  apiserver的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: etcd的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  etcd的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: kube-state-metrics的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"      - alert: kube-state-metrics的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"      - alert: coredns的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"      - alert: coredns的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"      - alert: kube-proxy打开句柄数>600expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kube-proxy打开句柄数>1000expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>600expr: process_open_fds{job=~"kubernetes-schedule"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>1000expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>600expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>1000expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>600expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>1000expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>600expr: process_open_fds{job=~"kubernetes-etcd"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>1000expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 600for: 2slabels:severity: warnning annotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 1000for: 2slabels:severity: criticalannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"value: "{{ $value }}"- alert: kube-proxyexpr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: schedulerexpr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-controller-managerexpr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-apiserverexpr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-etcdexpr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kube-dnsexpr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: HttpRequestsAvgexpr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"value: "{{ $value }}"threshold: "1000"   - alert: Pod_restartsexpr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0for: 2slabels:severity: warnningannotations:description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"value: "{{ $value }}"threshold: "0"- alert: Pod_waitingexpr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"value: "{{ $value }}"threshold: "1"   - alert: Pod_terminatedexpr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"value: "{{ $value }}"threshold: "1"- alert: Etcd_leaderexpr: etcd_server_has_leader{job="kubernetes-etcd"} == 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"value: "{{ $value }}"threshold: "0"- alert: Etcd_leader_changesexpr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"value: "{{ $value }}"threshold: "0"- alert: Etcd_failedexpr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"value: "{{ $value }}"threshold: "0"- alert: Etcd_db_total_sizeexpr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"value: "{{ $value }}"threshold: "10G"- alert: Endpoint_readyexpr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"value: "{{ $value }}"threshold: "1"- name: 物理节点状态-监控告警rules:- alert: 物理节点cpu使用率expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90for: 2slabels:severity: ccriticalannotations:summary: "{{ $labels.instance }}cpu使用率过高"description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: 物理节点内存使用率expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90for: 2slabels:severity: criticalannotations:summary: "{{ $labels.instance }}内存使用率过高"description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"- alert: InstanceDownexpr: up == 0for: 2slabels:severity: criticalannotations:   summary: "{{ $labels.instance }}: 服务器宕机"description: "{{ $labels.instance }}: 服务器延时超过2分钟"- alert: 物理节点磁盘的IO性能expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"- alert: 入网流量带宽expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入网络带宽过高!"description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: 出网流量带宽expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流出网络带宽过高!"description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: TCP会话expr: node_netstat_Tcp_CurrEstab > 1000for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"- alert: 磁盘容量expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
kubectl delete -f prometheus-cfg.yaml              # 删除原有配置kubectl apply -f prometheus-alertmanager-cfg.yaml  # 应用刚创建的配置

在这里插入图片描述

6.1.6、部署prometheus和altermanager

先删除之前安装的 Prometheus,然后创建一个包含 Prometheus 和 Alertmanager 的 Pod。

kubectl delete -f prometheus-deployment.yaml

在这里插入图片描述

6.1.7、通过deployment部署prometheus和altermanager

1、生成 etcd-certs(部署 Prometheus 所需的 etcd 证书)

kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt

在这里插入图片描述

这将在 monitor-sa 命名空间下创建一个名为 etcd-certs 的 Secret。Secret 中包含了 server.key、server.crt 和 ca.crt 这三个文件,它们是部署 Prometheus 所需的 etcd 证书。

要不后面会报错:

[root@k8s-master k8s-monitor]# kubectl describe pod prometheus-server-7d5dbd84fb-xdr5r -n monitor-sa
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
Events:Type     Reason       Age                 From     Message----     ------       ----                ----     -------Warning  FailedMount  9s                  kubelet  Unable to attach or mount volumes: unmounted volumes=[k8s-certs], unattached volumes=[prometheus-storage-volume k8s-certs kube-api-access-bh6jn alertmanager-config alertmanager-storage localtime prometheus-config]: timed out waiting for the conditionWarning  FailedMount  4s (x9 over 2m12s)  kubelet  MountVolume.SetUp failed for volume "k8s-certs" : secret "etcd-certs" not found
[root@k8s-master k8s-monitor]# 

在这里插入图片描述

2、编辑文件 prometheus-alertmanager-deploy.yaml 的内容,根据自己的环境修改 nodeName 的值。

vim prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-servernamespace: monitor-salabels:app: prometheus
spec:replicas: 1selector:matchLabels:app: prometheuscomponent: server#matchExpressions:#- {key: app, operator: In, values: [prometheus]}#- {key: component, operator: In, values: [server]}template:metadata:labels:app: prometheuscomponent: serverannotations:prometheus.io/scrape: 'false'spec:nodeName: k8s-node01 ## 将prometheus pod调度到k8s-node01serviceAccountName: monitorcontainers:- name: prometheusimage: prom/prometheus:v2.2.1 ##镜像imagePullPolicy: IfNotPresentcommand:- "/bin/prometheus"args:- "--config.file=/etc/prometheus/prometheus.yml"- "--storage.tsdb.path=/prometheus"- "--storage.tsdb.retention=24h"- "--web.enable-lifecycle"ports:- containerPort: 9090protocol: TCPvolumeMounts:- mountPath: /etc/prometheusname: prometheus-config- mountPath: /prometheus/name: prometheus-storage-volume- name: k8s-certsmountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/- name: alertmanagerimage: prom/alertmanager:v0.14.0imagePullPolicy: IfNotPresentargs:- "--config.file=/etc/alertmanager/alertmanager.yml"- "--log.level=debug"ports:- containerPort: 9093protocol: TCPname: alertmanagervolumeMounts:- name: alertmanager-configmountPath: /etc/alertmanager- name: alertmanager-storagemountPath: /alertmanager- name: localtimemountPath: /etc/localtimevolumes:- name: prometheus-configconfigMap:name: prometheus-config- name: prometheus-storage-volumehostPath:path: /datatype: Directory- name: k8s-certssecret:secretName: etcd-certs- name: alertmanager-configconfigMap:name: alertmanager- name: alertmanager-storagehostPath:path: /data/alertmanagertype: DirectoryOrCreate- name: localtimehostPath:path: /usr/share/zoneinfo/Asia/Shanghai

3、将部署文件应用到 Kubernetes 集群中:

kubectl apply -f prometheus-alertmanager-deploy.yaml

4、查看prometheus是否部署成功

kubectl get pods -n monitor-sa | grep prometheus

查看日志:

kubectl logs prometheus-server-7cf6749bb-7znqh -n monitor-sa -c  prometheuskubectl logs prometheus-server-7cf6749bb-7znqh -n monitor-sa -c  alertmanager

在这里插入图片描述

确认 Prometheus 的 Pod 状态为 Running,这表明 Prometheus 已经成功部署并且正在正常运行。

6.1.8、创建altermanager前端service,方便浏览器访问

1、在控制节点创建yaml文件

vim altermanager-svc.yaml
apiVersion: v1
kind: Service
metadata:labels:name: prometheuskubernetes.io/cluster-service: 'true'name: alertmanagernamespace: monitor-sa
spec:ports:- name: alertmanagernodePort: 30066port: 9093protocol: TCPtargetPort: 9093selector:app: prometheussessionAffinity: Nonetype: NodePort

2、应用配置文件

kubectl apply -f altermanager-svc.yaml

在这里插入图片描述

3、查看service在物理机的映射端口

kubectl get svc -n monitor-sa

在这里插入图片描述

4、浏览器访问测试

控制节点IP+端口(192.168.234.20:30066)

在这里插入图片描述

6.1.9、部署完成后,有关问题解决

http://192.168.234.20:30682/targets

在Prometheus 页面有报错:

在这里插入图片描述

Kubernetes 中的控制器管理器(kubernetes-controller-manager)、调度器(kubernetes-scheduler)和 kube-proxy(kubernetes-kube-proxy)无法连接到它们依赖的端口,按如下方法处理:

通过修改他们绑定的端口来解决,具体通过修改kubernetes-controller-manager.yaml,kubernetes-scheduler.yaml,文件中的参数来将他们绑定到物理节点上。然后重启各节点的kubelet。

1、解决过程:

vim /etc/kubernetes/manifests/kube-controller-manager.yaml1、编辑控制器管理器配置文件:并修改其中的参数。把--bind-address=127.0.0.1 变成--bind-address=192.168.234.20把 httpGet:字段下的 hosts 由 127.0.0.1 变成 192.168.234.20--port=0 删除,其中192.168.234.20为master控制节点IP。vim /etc/kubernetes/manifests/kube-scheduler.yaml2、编辑调度器配置文件:并修改其中的参数。把--bind-address=127.0.0.1 变成--bind-address=192.168.234.20把 httpGet:字段下的 hosts 由 127.0.0.1 变成 192.168.234.20--port=0 删除,其中192.168.234.20为master控制节点IP。
3、重启 kubelet:在每个节点上重启 kubelet 服务,以使新的配置生效。sudo systemctl restart kubelet

kube-controller-manager.yaml:

在这里插入图片描述

kube-scheduler.yaml:

在这里插入图片描述

在这里插入图片描述

4、修改kubernetes-kube-proxy组件的端口映射地址。
编辑 kube-proxy 的 ConfigMap 来修改默认端口的绑定地址。4.1:运行以下命令编辑 kube-proxy 的 ConfigMap:kubectl edit configmap kube-proxy -n kube-system4.2:修改端口绑定地址:在编辑器中找到 metricsBindAddress 这一项,并将其修改为 0.0.0.0:10249,表示监听所有网络接口的指定端口。metricsBindAddress: "0.0.0.0:10249"4.3:重启 kube-proxy Pod:运行以下命令删除 kube-proxy Pod,Kubernetes 将自动重新创建它,以使新的配置生效:kubectl get pods -n kube-system | grep kube-proxy | awk '{print $1}' | xargs kubectl delete pods -n kube-system

在这里插入图片描述
在这里插入图片描述

2、再次刷新Prometheus界面:

获取 Kubernetes 集群中 kube-system 命名空间下的所有 Pod 列表:

kubectl get pods -n kube-system

在这里插入图片描述

kubernetes-schedule (0/1 up)

kubernetes-controller-manager (0/1 up)

kube-proxy (0/1 up)

问题解决:

在这里插入图片描述

一个报警信息在生命周期内有下面3种状态:

inactive: 表示当前报警信息既不是firing状态也不是pending状态

pending: 表示在设置的阈值时间范围内被激活了

firing: 表示超过设置的阈值时间被激活了

6.1.10、邮箱收取告警信息-测试

1、修改物理节点内存使用率 > 10%

在这里插入图片描述

Prometheus 页面:

在这里插入图片描述

Alertmanager页面:

在这里插入图片描述

QQ邮箱页面:

在这里插入图片描述
在这里插入图片描述

6.2、部署altermanager发送报警到钉钉群

6.1、创建钉钉机器人–电脑版钉钉

可以按照以下步骤在钉钉中创建自定义机器人:

https://open.dingtalk.com/document/robots/custom-robot-access

6.2、控制节点安装webhook插件

1、webhook插件下载地址:

https://download.csdn.net/download/qq_41840843/89112406

tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz
cd prometheus-webhook-dingtalk-0.3.0.linux-amd64

在这里插入图片描述

# 解压tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gzcd prometheus-webhook-dingtalk-0.3.0.linux-amd64

在这里插入图片描述

2、启动钉钉报警插件:

在这里插入图片描述
后台 启动"prometheus-webhook-dingtalk"的程序,并将其监听地址设置为"0.0.0.0:8060",同时配置了一个钉钉机器人的配置文件,其中"master1"是配置的一个别名,指向钉钉机器人的 webhook 地址。

nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="master1=https://oapi.dingtalk.com/robot/send?access_token=你自己的token值" &其中master1为关键词。

在这里插入图片描述

在这里插入图片描述

3、修改Alertmanager配置文件

修改接收者receiver ‘default-receiver’, '为dingding。

------
receiver: master1      #  接收者配置
-------- name: 'master1'                               # 与上面设置的接收者对应(不对应pod起不来)webhook_configs:- url: 'http://192.168.234.20:8060/dingtalk/master1/send'send_resolved: true                          # 问题解决是否发送

在这里插入图片描述

4、命令请求测试


curl -H "Content-Type: application/json" -d '{"msgtype":"text","text":{"content":"告警测试,master1"}}' \
https://oapi.dingtalk.com/robot/send?access_token=95e85547967c0ea1b3080cffd2a0b39275e3dd57fa6cbbee39a98232346bb## 注意要含有你设置的关键字

在这里插入图片描述

5、使配置生效

kubectl delete -f alertmanager-email-163cfg.yaml                  # 删除原Alertmanager配置
kubectl apply -f alertmanager-email-163cfg.yaml                    #  使新配置生效
kubectl delete -f prometheus-alertmanager-cfg.yaml    # 删除原prometheus配置
kubectl apply -f prometheus-alertmanager-cfg.yaml       # 使新配置生效
kubectl delete -f prometheus-alertmanager-deploy.yaml    # 删除原deployment 
kubectl apply -f prometheus-alertmanager-deploy.yaml    # 创建新的deployment

6.3、钉钉收取告警信息-验证

在这里插入图片描述

在这里插入图片描述

7、总结:

1、常用命令:

1、 创建命名空间
kubectl create namespace <namespace_name>2、列出所有的命名空间
kubectl get namespaces3、创建一个服务账号
kubectl create serviceaccount <service_account_name>4、在指定的命名空间中创建一个名为 <service_account_name> 的服务账号
kubectl create serviceaccount <service_account_name> --namespace=<namespace_name>5、应用(或创建/更新)Kubernetes 资源kubectl apply -f **.yaml6、删除 Kubernetes 资源,如部署、服务、配置映射
kubectl delete -f **.yaml

2、注意事项

1、版本兼容性: 确保所选工具的版本与您的 Kubernetes 版本兼容。不同的 Kubernetes 版本可能需要不同版本的监控工具来支持。

2、资源消耗: Prometheus 和 Grafana 是资源密集型的应用程序,特别是在大型集群中监控大量指标时。确保为它们分配足够的资源,并监视它们的性能以避免资源不足。

在这里插入图片描述


💖The End💖点点关注,收藏不迷路💖

相关文章:

Kubernetes(k8s)监控与报警(qq邮箱+钉钉):Prometheus + Grafana + Alertmanager(超详细)

Kubernetes&#xff08;k8s&#xff09;监控与报警&#xff08;qq邮箱钉钉&#xff09;&#xff1a;Prometheus Grafana Alertmanager&#xff08;超详细&#xff09; 1、部署环境2、基本概念简介2.1、Prometheus简介2.2、Grafana简介2.3、Alertmanager简介2.4、Prometheus …...

STM32-04基于HAL库(CubeMX+MDK+Proteus)中断案例(按键中断扫描)

文章目录 一、功能需求分析二、Proteus绘制电路原理图三、STMCubeMX 配置引脚及模式&#xff0c;生成代码四、MDK打开生成项目&#xff0c;编写HAL库的按键检测代码五、运行仿真程序&#xff0c;调试代码 一、功能需求分析 在完成GPIO输入输出案例之后&#xff0c;开始新的功能…...

第十五篇:Mybatis

文章目录 一、什么是MyBatis二、Mybatis入门案例三、配置SQL提示四、数据库连接池四、lombok五、mybatis基础操作5.1 根据id删除5.2 预编译SQL5.3 新增员工5.4 更新员工5.5 查询员工&#xff08;用于页面回显&#xff09;5.6 条件查询 七、XML映射文件八、动态SQL8.1 if语句8.2…...

【MacBook系统homebrew镜像记录】

安装 使用Homebrew 国内源安装脚本,贼方便&#xff1a; /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"切换至清华大学镜像源&#xff1a; 命令合并&#xff1a; 分别切换了 brew.git、 homebrew-core.git、 homebrew-…...

深拷贝总结

JSON.parse(JSON.stringify(obj)) 这行代码的运行过程&#xff0c;就是利用 JSON.stringify 将js对象序列化&#xff08;JSON字符串&#xff09;&#xff0c;再使用JSON.parse来反序列化&#xff08;还原&#xff09;js对象&#xff1b;序列化的作用是存储和传输。&#xff08…...

RabbitMQ在云原生环境中部署和应用实践

一、RabbitMQ和云原生技术的关系 RabbitMQ是一种开源的、实现了先进的消息队列协议&#xff08;AMQP&#xff09;的消息队列软件。而云原生技术就是为在公共云、私有云以及其他各种云环境提供应用的一种方法。RabbitMQ和云原生技术在分布式系统和微服务架构中都起到了关键作用…...

flask 后端 + 微信小程序和网页两种前端:调用硬件(相机和录音)和上传至服务器

选择 flask 作为后端&#xff0c;因为后续还需要深度学习模型&#xff0c;python 语言最适配&#xff1b;而 flask 框架轻、学习成本低&#xff0c;所以选 flask 作为后端框架。 微信小程序封装了调用手机硬件的 api&#xff0c;通过它来调用手机的摄像头、录音机&#xff0c;…...

蓝桥杯嵌入式(G431)备赛笔记——ADC+LCD

目录 题目要求&#xff08;真题&#xff09;&#xff1a; cubeMX配置&#xff1a; 小试牛刀&#xff1a; Keil代码&#xff1a; 效果演示&#xff1a; 题目要求&#xff08;真题&#xff09;&#xff1a; 使用第十一届第二场真题&#xff0c;练习ADC波部分的代码 cubeMX配…...

最近公共祖先(LCA)

题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。 输入格式 第一行包含三个正整数 N,M,S,分别表示树的结点个数、询问的个数和树根结点的序号。 接下来 N−1 行每行包含两个正整数x,y,表示 x 结点和 y 结点之间有一条直接连接的边(数据保证可以…...

ABBYY FineReader15免费电脑OCR图片文字识别软件

产品介绍&#xff1a;ABBYY FineReader 15 OCR图片文字识别软件 ABBYY FineReader 15是一款光学字符识别&#xff08;OCR&#xff09;软件&#xff0c;专门设计用于将扫描的文档、图像和照片中的文本转换成可编辑和可搜索的格式。这款软件利用先进的OCR技术&#xff0c;能够识别…...

2024年第十七届 认证杯 网络挑战赛 (A题)| 保暖纤维的保暖能力 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2022年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 让我们来看看认证杯 网络挑战赛 (A题&#xff09;&#xff01…...

算法训练营第37天|LeetCode 738.单调递增的数字 968.监控二叉树

LeetCode 738.单调递增的数字 题目链接&#xff1a; LeetCode 738.单调递增的数字 解题思路&#xff1a; 从后向前遍历&#xff0c;当不满足递增条件时&#xff0c;当前位置赋值为9&#xff0c;前一位减一。之后记录不满足位置&#xff0c;将后续全部赋值为9. 代码&#x…...

Vue+el-table 修改表格 单元格横线边框颜色及表格空数据时边框颜色

需求 目前 找到对应的css样式进行修改 修改后 css样式 >>>.el-table th.el-table__cell.is-leaf {border-bottom: 1px solid #444B5F !important;}>>>.el-table td.el-table__cell,.el-table th.el-table__cell.is-leaf {border-bottom: 1px solid #444B5F …...

大恒相机-程序异常退出后显示被占用

心跳时间代表多久向相机发送一次心跳包&#xff0c;如果超时则设备会认为断开了&#xff0c;停止工作并主动释放占用资源。 在相机打开后添加代码&#xff1a; #ifdef _DEBUG//设置心跳超时时间 3sObjFeatureControlPtr->GetIntFeature("GevHeartbeatTimeout")-&…...

头歌-机器学习 第16次实验 EM算法

第1关:极大似然估计 任务描述 本关任务:根据本节课所学知识完成本关所设置的选择题。 相关知识 为了完成本关任务,你需要掌握: 什么是极大似然估计; 极大似然估计的原理; 极大似然估计的计算方法。 什么是极大似然估计 没有接触过或者没有听过”极大似然估计“的同学…...

电脑启动引导的两种方式

电脑启动引导的两种方式 电脑启动引导有两种方式&#xff1a;Legacy 传统模式 和 UEFI 新型模式。 一、Legacy&#xff1a;指 主板的 传统的 BIOS 传输模式引导启动加载操作系统。 1.只支持 MBR 分区表&#xff0c;支持 32位和64位操作系统&#xff08;如&#xff1a;winXP&…...

用php编写网站源码的一些经验

一、var_dump()函数 var_dump()函数在有页面跳转的情况下会看不到信息。因为 var_dump()函数输出信息默认显示到本页面。因此要看到var_dump()函数的输出&#xff0c;在有页面跳转时&#xff0c;需要将页面跳转改成显示本页面。 放在var_dump()函数里的变量如果是空值&#x…...

海山数据库(He3DB)原理剖析:浅析OLAP数据库计算引擎中的统计信息

背景&#xff1a; 统计信息在计算引擎的优化器模块中经常被提及&#xff0c;尤其是在基于成本成本优化&#xff08;CBO&#xff09;框架中统计信息发挥着至关重要的作用。CBO旨在通过评估执行查询的可能方法&#xff0c;并选择最有效的执行计划来提高查询性能。而统计信息则提…...

视频图像的两种表示方式YUV与RGB(4)

本篇主要讲YUV与RGB之间的转换&#xff0c;包括YUV444 颜色编码格式 转为 RGB 格式 &#xff0c;RGB颜色编码格式转为 YUV444 格式。 一、 YUV与RGB之间的转换 YUV与RGB颜色格式之间进行转换时 , 涉及一系列的数学运算 ; YUV 颜色编码格式转为RGB格式的转换公式 取决于 于 YUV …...

PostgreSQL入门到实战-第十四弹

PostgreSQL入门到实战 PostgreSQL数据过滤(七)官网地址PostgreSQL概述PostgreSQL中BETWEEN 命令理论PostgreSQL中BETWEEN 命令实战更新计划 PostgreSQL数据过滤(七) BETWEEN运算符允许您检查值是否在值的范围内。 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容…...

分布式数据库中间件 Mycat 和 ShardingSphere 对比

Mycat 和 ShardingSphere 都是流行的分布式数据库中间件&#xff0c;都可以用于实现数据分片、读写分离和分布式事务等功能&#xff0c;但它们在设计理念、特点和功能实现上有一些区别 1. 设计理念&#xff1a; Mycat&#xff1a; 基于 MySQL 协议的代理式架构&#xff0c;主要…...

Python实现BOA蝴蝶优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 蝴蝶优化算法(butterfly optimization algorithm, BOA)是Arora 等人于2019年提出的一种元启发式智能算…...

3D Web轻量化引擎HOOPS Commuicator如何从整体装配中创建破碎的装配零件和XML?

前言 虽然可以从某些本机CAD格式&#xff08;其子组件驻留在单独的文件中&#xff0c;例如CATIA V5、Creo - Pro/E、NX或SolidWorks&#xff09;创建破碎装配&#xff0c;但无法从整体装配文件&#xff08;例如IFC、Revit&#xff09;创建或3DXML。 本文介绍了一个示例&#…...

关于运行阿里云直播Demo pub get 报的错

flutter --version dart --version 如何使用Flutter框架推流_音视频终端 SDK(Apsara Video SDK)-阿里云帮助中心 终端输入 dart pub --trace get --no-precompile 打印详细报错信息 详细咨询chatgpt pub.dev 中已经是最新版本了 项目中已经是最新版本了 最终定位到 终端…...

C语言调用Python

目录 1.直接调用python语句 头文件引用 2.调用无参有参函数 1、调用无参函数 1.建立nopara.py文件 2.使用c语言根据上面流程进行调用 2、调用有参函数 1.建立nopara.py文件 2.使用c语言根据上面流程进行调用 C语言调用python需要我们已经安装好了libpython3的 dev依赖…...

SVN客户端异常问题处理

1、如遇svn服务端异常&#xff08;所有用户登录不上&#xff09; &#xff08;1&#xff09;登录192.168.**.**服务器&#xff0c;找到E:\仓库所在盘\VisualSVN-GlobalWinAuthz.ini &#xff08;2&#xff09;先备份VisualSVN-GlobalWinAuthz.ini文件 &#xff08;3&#xf…...

gin+sse实现离散的消息通知

虽然网上的都是用sse实现将实时消息流不间断的推给前端&#xff0c;但是sse也可以模拟websocket进行突发的消息通知&#xff0c;而不是一直读取数据并返回数据。即服务端保存所有的连接对象&#xff0c;前端管理界面发送正常的http请求&#xff0c;在后端遍历所有的连接对象&am…...

C++ //练习 11.38 用unordered_map重写单词计数程序(参见11.1节,第375页)和单词转换程序(参见11.3.6节,第391页)。

C Primer&#xff08;第5版&#xff09; 练习 11.38 练习 11.38 用unordered_map重写单词计数程序&#xff08;参见11.1节&#xff0c;第375页&#xff09;和单词转换程序&#xff08;参见11.3.6节&#xff0c;第391页&#xff09;。 环境&#xff1a;Linux Ubuntu&#xff0…...

【示例】MySQL-4类SQL语言-DDL-DML-DQL-DCL

前言 本文主要讲述MySQL中4中SQL语言的使用及各自特点。 SQL语言总共分四类&#xff1a;DDL、DML、DQL、DCL。 SQL-DDL | Data Definition Language 数据定义语言&#xff1a;用来定义/更改数据库对象&#xff08;数据库、表、字段&#xff09; 用途 | 操作数据库 # 查询所…...

基于SpringBoot+Vue的果蔬种植销售一体化服务平台(源码+文档+部署+讲解)

一.系统概述 伴随着我国社会的发展&#xff0c;人民生活质量日益提高。于是对果蔬种植销售一体化服务管理进行规范而严格是十分有必要的&#xff0c;所以许许多多的信息管理系统应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套果蔬种植销售一体…...