【opencv】示例-pca.cpp PCA图像重建演示


// 加载必要的头文件
#include <iostream> // 用于标准输入输出流
#include <fstream> // 用于文件的输入输出
#include <sstream> // 用于字符串的输入输出流操作#include <opencv2/core.hpp> // OpenCV核心功能的头文件
#include "opencv2/imgcodecs.hpp" // OpenCV图像编解码功能的头文件
#include <opencv2/highgui.hpp> // OpenCV的高级GUI(图形用户界面)// 使用标准命名空间和OpenCV命名空间,避免重复声明
using namespace cv;
using namespace std;///
// 函数声明部分// read_imgList函数用于从文本文件中读取图像路径并加载这些图像
static void read_imgList(const string& filename, vector<Mat>& images) {std::ifstream file(filename.c_str(), ifstream::in); // 打开文件if (!file) {string error_message = "No valid input file was given, please check the given filename."; // 错误消息CV_Error(Error::StsBadArg, error_message); // 如果文件打开失败,给出错误信息并退出程序}string line; // 存储读取的每行文字while (getline(file, line)) {images.push_back(imread(line, IMREAD_GRAYSCALE)); // 将每行读取到的图像路径用于加载图像,并转换为灰度图像}
}// formatImagesForPCA函数用于将图像数据格式化为一个适合PCA处理的矩阵
static Mat formatImagesForPCA(const vector<Mat> &data)
{// 创建一个用于PCA处理的矩阵,将所有图像行向量垂直堆叠Mat dst(static_cast<int>(data.size()), data[0].rows*data[0].cols, CV_32F);for(unsigned int i = 0; i < data.size(); i++) // 遍历所有图像{Mat image_row = data[i].clone().reshape(1,1); // 将每张图像转换为行向量Mat row_i = dst.row(i); // 获取目标矩阵的当前行image_row.convertTo(row_i,CV_32F); // 将图像数据转换为浮点型,并填入目标矩阵的相应行}return dst; // 返回格式化后的矩阵
}// toGrayscale函数用于将输入图像转换为灰度图像,并进行归一化处理
static Mat toGrayscale(InputArray _src) {Mat src = _src.getMat(); // 获取输入数据的Mat对象// 检查是否是单通道图像if(src.channels() != 1) {CV_Error(Error::StsBadArg, "Only Matrices with one channel are supported"); // 如果不是,抛出异常}// 创建一个目标Mat对象,并对输入图像进行归一化处理Mat dst;cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);return dst; // 返回处理后的图像
}// 定义一个结构体用于传递给滑动条回调函数的参数
struct params
{Mat data; // 存放数据的Mat矩阵int ch; // 图像的通道数int rows; // 图像行数PCA pca; // PCA对象string winName; // 窗口名称
};// onTrackbar滑动条回调函数,用于根据Retained Variance(保留方差)的变化更新PCA结果并显示
static void onTrackbar(int pos, void* ptr)
{cout << "Retained Variance = " << pos << "% ";cout << "re-calculating PCA..." << std::flush; // 提示正在重新计算PCAdouble var = pos / 100.0; // 将滑动条的整型位置值转换为[0,1]之间的百分比表示的保留方差struct params *p = (struct params *)ptr; // 从回调函数的指针参数中提取出params结构体// 使用新的保留方差重新计算PCAp->pca = PCA(p->data, cv::Mat(), PCA::DATA_AS_ROW, var); // 将原始数据的第一行(第一幅图像)投影到PCA空间,并获取其点representationMat point = p->pca.project(p->data.row(0));// 然后利用该点representation重构图像Mat reconstruction = p->pca.backProject(point);reconstruction = reconstruction.reshape(p->ch, p->rows); // 重构的图像需要重新改变其形状reconstruction = toGrayscale(reconstruction); // 转换为灰度图便于显示// 在窗口中显示重构的图像imshow(p->winName, reconstruction);// 打印PCA使用的主成分数量cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl;
}///
// 主程序
int main(int argc, char** argv)
{// 解析命令行参数cv::CommandLineParser parser(argc, argv, "{@input||image list}{help h||show help message}");// 如果存在"help"参数,则打印帮助消息if (parser.has("help")){parser.printMessage();exit(0);}// 获取CSV文件的路径string imgList = parser.get<string>("@input");// 如果未传入图片列表,则打印消息并退出程序if (imgList.empty()){parser.printMessage();exit(1);}// 创建一个向量来存储图像vector<Mat> images;// 读取数据,如果失败则会抛出异常try {read_imgList(imgList, images);} catch (const cv::Exception& e) {cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;exit(1);}// 如果图片不足以进行此演示,则退出程序if(images.size() <= 1) {string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";CV_Error(Error::StsError, error_message);}// 将图像重排并堆叠成一个行矩阵Mat data = formatImagesForPCA(images);// 执行PCA// 这里trackbar初始设置为95%,这也是一个常见的保留方差值PCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // 展示保留方差对第一张图片效果的演示Mat point = pca.project(data.row(0)); // 将图像投影到特征空间,图像变成了一个“点”Mat reconstruction = pca.backProject(point); // 从“点”中重建图像reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // 重新将行向量变形为图像形状reconstruction = toGrayscale(reconstruction); // 重新缩放以便于显示// 初始化高层GUI窗口string winName = "Reconstruction | press 'q' to quit";namedWindow(winName, WINDOW_NORMAL);// 创建一个结构体以传递给trackbar处理函数params p;p.data = data;p.ch = images[0].channels();p.rows = images[0].rows;p.pca = pca;p.winName = winName;// 创建trackbarint pos = 95;createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);// 显示直到用户按下'q'键imshow(winName, reconstruction);char key = 0;while(key != 'q')key = (char)waitKey();return 0;
} 代码的主要功能是,通过用户输入一个包含图像全路径的文本文件,该文件的每一行都代表一张图片的路径。程序将会使用主成分分析(PCA)技术对这些图像进行处理,并通过OpenCV库完成。这一处理过程可以通过一个trackbar(滑动条)来动态调整保留方差的百分比,从而展现不同保留方差下图像重建的效果。程序界面会持续显示直到用户按下'q'键退出。这个代码示例建议使用AT&T人脸数据库的前15个人脸图片来演示。

// Reshape and stack images into a rowMatrixMat data = formatImagesForPCA(images);// perform PCAPCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance// Demonstration of the effect of retainedVariance on the first imageMat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"Mat reconstruction = pca.backProject(point); // re-create the image from the "point"reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shapereconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes 

imageslist.txt
https://www.kaggle.com/datasets/kasikrit/att-database-of-faces?resource=download 数据下载地址


相关文章:
【opencv】示例-pca.cpp PCA图像重建演示
// 加载必要的头文件 #include <iostream> // 用于标准输入输出流 #include <fstream> // 用于文件的输入输出 #include <sstream> // 用于字符串的输入输出流操作#include <opencv2/core.hpp> // OpenCV核心功能的头文件 #include "o…...
C语言中的编译和链接
系列文章目录 文章目录 编辑 系列文章目录 文章目录 前言 一、 翻译环境和运行环境 二、 翻译环境 2.1 编译 2.1.1 预处理 2.1.2 编译 2.1.2.1 词法分析 : 2.1.2.2 语法分析 2.1.2.3 语义分析 2.1.3 汇编 2.2 链接 三、运行环境 前言 在我们平常的写代码时,我们很…...
如何将三方库集成到hap包中——通过IDE集成cmak构建方式的C/C++三方库
简介 cmake构建方式是开源三方库的主流构建方式。DevEco Studio目前以支持cmake的构建方式。本文将通过在IDE上适配cJSON三方库为例讲来解如何在IDE上集成cmake构建方式得三方库。 创建工程 在开发进行三方库适配以及napi接口开发前,我们需要创建一个三方库对应的…...
Towards Street-Level Client-Independent IP Geolocation(2011年)(第二部分)
被引次数:306 Wang Y, Burgener D, Flores M, et al. Towards {Street-Level}{Client-Independent}{IP} Geolocation[C]//8th USENIX Symposium on Networked Systems Design and Implementation (NSDI 11). 2011. 接着Towards Street-Level Client-Independent IP Geolocati…...
软件测试过程和测试生命周期
众所周知,软件生命周期包括,需求阶段、设计阶段、设计构建阶段、测试周期阶段、最后测试、实施阶段、最后运维和维护验收。每个阶段都需要在软件开发的生命周期中从前一阶段交付。需求转化为设计,设计转化为开发和开发成测试,经过…...
python-study-day1
ps:前言 可做毕设,html,web,app,小程序,bug修改,可加急 作者自述 作为一名前端开发工程师,这个大环境不好的情况下,我试过我前端接单子但是没有后端,…...
【Apache2】彻底删除 Apache2 服务器
要彻底删除 Apache2 服务器,需要卸载 Apache2 软件包并删除其配置文件和数据文件。在 Ubuntu 上,可以按照以下步骤来完成: 停止 Apache2 服务: sudo systemctl stop apache2卸载 Apache2 软件包: sudo apt-get purge a…...
C#:成绩等级转换
任务描述 本关任务:给出一百分制成绩,要求输出成绩等级‘A’、‘B’、‘C’、‘D’、‘E’。 90分以上为A 80-89分为B 70-79分为C 60-69分为D 60分以下为E,如果输入数据不在0~100范围内,请输出一行:“Score is error!”…...
每日OJ题_01背包③_力扣494. 目标和(dp+滚动数组优化)
目录 力扣494. 目标和 问题解析 解析代码 滚动数组优化代码 力扣494. 目标和 494. 目标和 难度 中等 给你一个非负整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 或 - ,然后串联起所有整数,可以构造一个 表达式 : …...
vue3+element plus图片预览点击按钮直接显示图片的预览形式
1 需求 直接上需求: 我想要直接点击下面这个“预览”按钮,然后呈现出预览图片的形式 ok,需求知道了,下面让我们来看看如何实现吧 ~ 2 实现 template部分 <el-buttontype"primary"size"small"click&qu…...
GAMS104 现代游戏引擎 2
渲染的难点可以分为一下三部分:如何计算入射光线、如何考虑材质以及如何实现全局光照。 渲染的难点之一在于阴影,或者说是光的可见性。如何做出合适的阴影效果远比想象中要难得多,在实践中往往需要通过大量的技巧才能实现符合人认知的阴影效…...
spring boot学习第十七篇:OAuth2概述及使用GitHub登录第三方网站
0. 导言 我们在浏览器上可以访问成百上千个网站,使用每个网站的服务一般都要先注册账号,那么我们为了更好地记忆,一般都会在多个网站使用相同的账号和密码进行注册。那么问题就来了,如果在你注册的网站中有某些个网站的系统设计不…...
基于springboot的电影评论网站系统源码数据库
基于springboot的电影评论网站系统源码数据库 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了电影评论网站的开发全过程。通过分析电影评论网站管理的不足,创建了一个计算机管理电影评论网站的方案。文…...
javaScript手写专题——实现instanceof/call/apply/bind/new的过程/继承方式
目录 原型链相关 手写instanceof 实现一个_instance方法,判断对象obj是否是target的实例 测试 手写new的过程 实现一个myNew方法,接收一个构造函数以及构造函数的参数,返回构造函数创建的实例对象 测试myNew方法 手写类的继承 ES6&…...
C++11 新特性:tuple 元组
std::tuple是 C11 中引入的一个非常强大的类型,它允许将多个类型不同的值,组合成单一对象。 std::tuple非常适合用于那些需要返回多个值的场景,而且它的灵活性和通用性使得其成为现代 C 编程中不可或缺的一部分。下面,我们将探讨…...
最齐全,最简单的免费SSL证书获取方法——实现HTTPS访问
一:阿里云 优势:大平台,在站长中知名度最高,提供20张免费单域名SSL证书 缺点:数量有限,并且只有单域名证书,通配符以及多域名没有免费版本。并且提供的单域名证书只有三个月的期限。 二&#…...
c语言->贪吃蛇实战技巧结合EasyX简单实现页面管理(简单实现)
✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉 🍎个人主页:再无B~U~G-CSDN博客 1. 游戏背景 贪吃蛇是久负盛名的游戏,它也和俄罗斯⽅…...
C语言-详解内存函数
文章目录 1.memcpy使用和模拟实现1.1 memcpy函数的使用规则1.2 memcpy函数的使用1.2 模拟实现memcpy函数 2.memmove 函数的使用和模拟实现2.1 memmove 函数使用规则2.2 memmove函数的使用2.3 模拟实现memmove函数2.3.1 从后往前移2.3.2 从前往后移 2.4 算法实现2.4.1 从前往后移…...
【核心完整复现】基于目标级联法的微网群多主体分布式优化调度
1 主要内容 之前发布了华电学报的复现程序《基于目标级联法的微网群多主体分布式优化调度》,具体链接为【防骗版】基于目标级联法的微网群多主体分布式优化调度,虽然对模型及结果进行了复现,但是部分模型细节和参数并没有完全实现࿰…...
Mac下安装NVM,NVM安装Node(附带NPM)
1、理解NVM、node、NPM 什么是NVM? NVM: Node.js Version Manager,用来管理 node 的版本。 什么是 Node.js? Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。 Node.js使用了一个事件驱动、非阻塞式I/O的模型( Node.js的特性&…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
