当前位置: 首页 > news >正文

Python+Django+Html网页版人脸识别考勤打卡系统

程序示例精选
Python+Django+Html人脸识别考勤打卡系统
如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对《Python+Django+Html网页版人脸识别考勤打卡系统》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


运行结果


文章目录

一、所需工具软件
二、使用步骤
       1. 主要代码
       2. 运行结果
三、在线协助

一、所需工具软件

       1. Python
       2. Pycharm

二、使用步骤

代码如下(示例):
def detect(save_img=False):source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))# Directoriessave_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir# Initializeset_logging()device = select_device(opt.device)half = device.type != 'cpu'  # half precision only supported on CUDA# Load modelmodel = attempt_load(weights, map_location=device)  # load FP32 modelstride = int(model.stride.max())  # model strideimgsz = check_img_size(imgsz, s=stride)  # check img_sizeif half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = check_imshow()cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz, stride=stride)else:save_img = Truedataset = LoadImages(source, img_size=imgsz, stride=stride)# Get names and colorsnames = model.module.names if hasattr(model, 'module') else model.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in names]# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run oncet0 = time.time()for path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = time_synchronized()pred = model(img, augment=opt.augment)[0]# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfor i, det in enumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.countelse:p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)p = Path(p)  # to Pathsave_path = str(save_dir / p.name)  # img.jpgtxt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txts += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhif len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img:  # Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)# Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')# Save results (image with detections)if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else:  # 'video'if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfourcc = 'mp4v'  # output video codecfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''print(f"Results saved to {save_dir}{s}")print(f'Done. ({time.time() - t0:.3f}s)')print(opt)check_requirements()with torch.no_grad():if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect()strip_optimizer(opt.weights)else:detect()
运行结果

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!

1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作
5)云服务器申请
6)网站制作

当前文章连接:https://blog.csdn.net/alicema1111/article/details/132666851
个人博客主页:https://blog.csdn.net/alicema1111?type=blog
博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

博主推荐:
Python人脸识别考勤打卡系统:
https://blog.csdn.net/alicema1111/article/details/133434445
Python果树水果识别:https://blog.csdn.net/alicema1111/article/details/130862842
Python+Yolov8+Deepsort入口人流量统计:https://blog.csdn.net/alicema1111/article/details/130454430
Python+Qt人脸识别门禁管理系统:https://blog.csdn.net/alicema1111/article/details/130353433
Python+Qt指纹录入识别考勤系统:https://blog.csdn.net/alicema1111/article/details/129338432
Python Yolov5火焰烟雾识别源码分享:https://blog.csdn.net/alicema1111/article/details/128420453
Python+Yolov8路面桥梁墙体裂缝识别:https://blog.csdn.net/alicema1111/article/details/133434445
Python+Yolov5道路障碍物识别:https://blog.csdn.net/alicema1111/article/details/129589741
Python+Yolov5人物目标行为 人体特征识别:https://blog.csdn.net/alicema1111/article/details/129272048

相关文章:

Python+Django+Html网页版人脸识别考勤打卡系统

程序示例精选 PythonDjangoHtml人脸识别考勤打卡系统 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《PythonDjangoHtml网页版人脸识别考勤打卡系统》编写代码,代码整洁&#xf…...

第1章、react基础知识;

一、react学习前期准备; 1、基本概念; 前期的知识准备: 1.javascript、html、css; 2.构建工具:Webpack:https://yunp.top/init/p/v/1 3.安装node:npm:https://yunp.top/init/p/v/1 …...

物联网会用到哪些数据开发

物联网(IoT)涉及大量的设备和传感器,产生的数据种类繁多,因此在物联网领域进行数据开发时,可能涉及以下几个方面: 数据采集与存储: 设备数据采集:从各种传感器和设备中采集数据&…...

[Linux]一篇文章带你搞定软硬连接

阅读导览: 先在windows中先见见软硬连接从名字、inode等方面分析软硬连接如何实现软硬连接硬链接注意事项软硬链接都用来干什么如何在windows中实现硬链接 文章目录 概念简述文件系统windows下的快捷方式--软硬链接的直观体现角度1:文件名角度2&#xff…...

AI常见关键术语

哈喽,大家好,我是小码哥,人工智能技术的快速发展带来了许多专业术语,这些词汇对于理解AI的工作原理和应用至关重要。以下是一些关键的AI术语,以及它们的专业解释和通俗总结。 一、核心概念 人工智能 (AI) 专业解释&am…...

DataX案例,MongoDB数据导入HDFS与MySQL

【尚硅谷】Alibaba开源数据同步工具DataX技术教程_哔哩哔哩_bilibili 目录 1、MongoDB 1.1、MongoDB介绍 1.2、MongoDB基本概念解析 1.3、MongoDB中的数据存储结构 1.4、MongoDB启动服务 1.5、MongoDB小案例 2、DataX导入导出案例 2.1、读取MongoDB的数据导入到HDFS 2…...

HarmonyOS鸿蒙端云一体化开发--适合小白体制

端云一体化 什么是“端”,什么是“云”? 答:“端“:手机APP端 “云”:后端服务端 什么是端云一体化? 端云一体化开发支持开发者在 DevEco Studio 内使用一种语言同时完成 HarmonyOS 应用的端侧与云侧开发。 …...

Quanto: PyTorch 量化工具包

量化技术通过用低精度数据类型 (如 8 位整型 (int8)) 来表示深度学习模型的权重和激活,以减少传统深度学习模型使用 32 位浮点 (float32) 表示权重和激活所带来的计算和内存开销。 减少位宽意味着模型的内存占用更低,这对在消费设备上部署大语言模型至关…...

宝塔面板Docker+Uwsgi+Nginx+SSL部署Django项目

这次为大家带来的是从零开始搭建一个django项目并将它部署到linux服务器上。大家可以按照我的步骤一步步操作,最终可以完成部署。 步骤1:在某个文件夹中创建一个django项目 安装django pip install django创建一个django项目将其命名为djangoProject …...

Android 无线调试 adb connect ip:port 失败

1. 在手机打开 无线调试 使用 adb connect 连接 adb connect 192.168.14.164:39511如果连接成功, 查看连接的设备, 忽略 配对下面的步骤. adb devices如果连接失败: failed to connect to 192.168.14.164:39511如果失败了, 可以杀死一下进程, 然后执行后面的操作 adb kill…...

年龄与疾病c++

题目描述 某医院想统计一下某项疾病的获得与否与年龄是否有关,需要对以前的诊断记录进行整理,按照0-18岁、19-35岁、36-60岁、61以上(含61)四个年龄段统计的患病人数以及占总患病人数的比例。 输入 共2行,第一行为过…...

neo4j-01

Neo4j是: 开源的(社区版开源免费)无模式(不用预设数据的格式,数据更加灵活)noSQL(非关系型数据库,数据更易拓展)图数据库(使用图这种数据结构作为数据存储方…...

正则表达式 速成

正则表达式的作用 正则表达式,又称规则表达式,(Regular Expression,在代码中常简写为regex、regexp或RE),是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字…...

21、Lua 面向对象

Lua 面向对象 Lua 面向对象面向对象特征Lua 中面向对象一个简单实例创建对象访问属性访问成员函数完整实例 Lua 继承完整实例 函数重写 Lua 面向对象 面向对象编程(Object Oriented Programming,OOP)是一种非常流行的计算机编程架构。 以下…...

openssl3.2 - exp - class warp for sha3-512

文章目录 openssl3.2 - exp - class warp for sha3-512概述笔记调用方代码子类 - cipher_sha3_512.h子类 - cipher_sha3_512.cpp基类 - cipher_md_base.h基类 - cipher_md_base.cpp备注END openssl3.2 - exp - class warp for sha3-512 概述 前面实验整了一个对buffer进行sha…...

cog predict docker unknown flag: --file

如图: 使用cog predict -i image“link-to-image” 出现docker unknown flag: --file的问题。 解决方法(对我可行):切换cog版本。 这个是我一开始的cog安装命令(大概是下的最新版?)&#xff1…...

SpringMVC接收参数方式讲解

PathVariable 该注解用于接收具有Restful风格的参数,如/api/v1/1001,最终userId的值为1001。 如下代码中,使用name属性可以指定GetMapping中的id名称与之对应,从而可以自定义参数名称userId,而不是使用默认名称id G…...

JavaScript 中arguments 对象详细解析与案例

在JavaScript中,每个函数都有一个内部对象arguments,它包含了函数调用时传递的所有参数。arguments对象类似一个数组,但是它并不是真正的数组,它没有数组的方法,只有length属性和索引访问元素的能力。 以下是对argume…...

消除 BEV 空间中的跨模态冲突,实现 LiDAR 相机 3D 目标检测

Eliminating Cross-modal Conflicts in BEV Space for LiDAR-Camera 3D Object Detection 消除 BEV 空间中的跨模态冲突,实现 LiDAR 相机 3D 目标检测 摘要Introduction本文方法Single-Modal BEV Feature ExtractionSemantic-guided Flow-based AlignmentDissolved…...

【免安装的MATLAB--MATLAB online】

目录: 前言账号的注册图片处理的示例准备图片脚本函数 总结 前言 在计算机、数学等相关专业中,或多或少都会与MATLAB产生藕断丝连的联系,如果你需要使用MATLAB,但是又不想要安装到自己的电脑上(它实在是太大了啊&#…...

Flyway 数据库版本管理

一、Flyway简介 Flyway是一款开源的数据库迁移工具,可以管理和版本化数据库架构。通过Flyway,可以跟踪数据库的变化,并将这些变化作为版本控制的一部分。Flyway支持SQL和NoSQL数据库,并且可以与现有的开发流程无缝集成&#xff0…...

lua学习笔记19(面相对象学习的一点总结)

print("*****************************面相对象总结*******************************") object{} --实例化方法 function object:new()local obj{}self.__indexselfsetmetatable(obj,self)return obj end-------------------------如何new一个对象 function object:…...

视觉SLAM学习打卡【10】-后端·滑动窗口法位姿图

本节是对上一节BA的进一步简化,旨在提高优化实时性.难点在于位姿图部分的雅可比矩阵求解(涉及李代数扰动模型求导),书中的相关推导存在跳步(可能数学功底强的人认为过渡的理所当然),笔者参考了知…...

【动态规划 区间dp 位运算】100259. 划分数组得到最小的值之和

本文涉及知识点 动态规划 区间dp 位运算 LeetCode100259. 划分数组得到最小的值之和 给你两个数组 nums 和 andValues,长度分别为 n 和 m。 数组的 值 等于该数组的 最后一个 元素。 你需要将 nums 划分为 m 个 不相交的连续 子数组,对于第 ith 个子数…...

CSS核心样式-02-盒模型属性及扩展应用

目录 三、盒模型属性 常见盒模型区域 盒模型图 盒模型五大属性 1. 宽度 width 2. 高度 height 3. 内边距 padding 四值法 三值法 二值法 单值法 案例 4. 边框 border 按照属性值的类型划分为三个单一属性 ①线宽 border-width ②线型 border-style ③边框颜色 bo…...

在 Google Cloud 上轻松部署开放大语言模型

今天,“在 Google Cloud 上部署”功能正式上线! 这是 Hugging Face Hub 上的一个新功能,让开发者可以轻松地将数千个基础模型使用 Vertex AI 或 Google Kubernetes Engine (GKE) 部署到 Google Cloud。 Model Garden (模型库) 是 Google Clou…...

005Node.js模块URL的使用

引入 URL 模块 要使用 URL 模块,首先需要在代码中引入它。可以使用以下代码将 URL 模块导入到你的脚本中: const url require(url);实例代码 const urlrequire(url); var apihttp://www.baidu.com?nameshixiaobin&age20; console.log(url.parse(…...

美团笔试复盘

昨天做了美团的笔试,现在复盘一下。 1、将数组按照绝对值大小排序 有道算法题解决思路需要将数组按照绝对值大小进行排序,我使用的是sort方法Comparator比较器实现的,这里记录一下: public static void main(String[] args) {In…...

IntelliJ IDEA - Since Maven 3.8.1 http repositories are blocked

问题描述 新下载的 IDEA 在构建项目时,在下载引用的包时出现 “Since Maven 3.8.1 http repositories are blocked” 的问题。 原因分析 从 Maven 3.8.1 开始,不再支持 http 的包了。由于现在对网络安全的日益重视,都在向 https 转变&#…...

Django的APP应用更名(重命名)流程

将Django中的一个现有APP更名是一个需要谨慎操作的过程,因为它涉及到多个文件和配置的更新。下面是详细的步骤和一些补充细节,帮助你更顺利地完成APP重命名: 1. 修改APP名称及相关引用 更改APP目录名称: 首先,重命名…...

在线购物网站的设计与实现/公司网站seo外包

《Delphi7完美经典》 Delphi 教程 系列书籍 (062) 《Delphi7完美经典》 网友(邦)整理 EMail: shuaihj163.com 下载地址: Part1 Part2 Part3 出版社 : 中国铁道出版社 作者 : 江义华国标编号:ISBN 7-113-…...

拉萨营销型网站建设/怎么用手机创建网站

本文章给大家介绍在php中类和对象的protected与const属性用法,有需要了解的朋友可参考参考。const属性用const属性定义的字段是一个常量,类中的常量和静态变量类似,不同之处就是常量的值一旦赋值不能被改变。const定义常量不需要加$符号&…...

深圳外贸网站建设/靖江seo要多少钱

原文链接 作者: Jakob Jenkov 译者:赵亮 SOAP是Simple Object Access Protocol(简单对象传输协议)的缩写。SOAP消息是基于XML格式进行传输的,流行的web service就是使用SOAP进行客户端和服务器之间的通信的。在这篇…...

主题网站设计模板/百度模拟搜索点击软件

准备好滚滚的JOE – Java on Everything吗? Java on Everything掌握了如何在几乎所有内容上运行Java的关键。 没有操作系统? 没问题。 JOE无需操作系统即可工作。 放弃操作系统的好处是什么? Java on Everything是由约瑟夫库里格&#xff08…...

建筑案例网站有哪些/上海企业网站推广

不知道什么原因,Zenoss官方的文档中似乎没有涉及到国际化方面的内容,本文对如何对Zenoss如何汉化做个简单的总结 基本汉化 http://code.google.com/p/zenforge/wiki/ZenossI18n 这里包含了基本的汉化包,该汉化包完成了60%左右的汉化工作,这…...

网站后台如何上传图片/中国新闻网最新消息

1.AndFix只能修复方法级别的bug使用流程:添加依赖→封装工具类→生成差异包(.patch文件)→loadpatch方法更新源码:初始化源码:PatchManager→init(比较版本号,删除旧版本)加载源码:addpatch→initPatchs()→addpatch()…...