当前位置: 首页 > news >正文

⑤-1 学习PID--什么是PID

PID 算法可以用于温度控制、水位控制、飞行姿态控制等领域。
后面我们通过PID 控制电机进行说明。

自动控制系统

在直流有刷电机的基础驱动中,如果电机负载不变,我们只要设置固定的占空比(电压),电机的速度就会稳定在目标范围。然而,在实际的应用中,负载可能会发生变化,此时如果还是输出固定的电压,电机的速度就偏离目标范围了,为了解决这个问题,我们需要引入自动控制系统中的闭环控制。接下来我们开始学习自动控制系统的内容。

  • 概念:用自动控制装置,对关键参数进行自动控制,使它在受到外界干扰而偏离正常状态时,能够被自动地调节回到目标范围内。
  • 应用场景电水壶保温系统 大棚温控系统水位控制系统,等等。
  • 分类:自动控制系统分为开环控制系统闭环控制系统 。

① 开环控制系统

在开环控制系统中,系统输出只受输入的控制,没有反馈回路,控制精度和抑制干扰的特性都比较差。电风扇风力控制系统就是一个开环控制的系统,我们设置好目标风力之后,控制电路就输出相应的电压(假设是电压控制),此时电机的扇叶转速就被控制在目标范围了。

理想状态下,风扇的输出风力确实可以稳定在目标值附近,然而,在实际的使用中,电机会逐渐老化,扇叶上的灰尘也会让负载增大,此时我们所设定目标风力和实际风力可能就存在偏差了。

 

②闭环控制系统

在闭环控制系统中,引入了反馈回路,利用输出(实际值)和输入(目标值)的偏差,对系统进行控制,避免偏离预定目标。

大棚温控系统就是一个闭环控制的系统,我们设置好目标温度之后,温度传感器会采集棚内的实际温度,然后将目标温度实际温度进行偏差的计算,计算后的结果输入到控制电路中,控制电路进一步控制温控设备进行升温和降温,此时棚内的实际温度就被控制在目标范围了。当实际温度因外部影响偏离目标值时,温度传感器(反馈电路)就能及时的反馈偏差,让系统自动调节温控设备,使得实际温度逐渐回到目标范围。

PID 算法

PID 算法是闭环控制系统中常用的算法,PID 分别是 Proportion(比例)Integral(积分)Differential(微分)的首字母缩写。它是一种结合比例、积分和微分三个环节于一体的闭环控制算法。

我们将输入目标值实际输出值进行偏差的计算,然后把计算结果输入到 PID控制算法中,经过比例、积分和微分三个环节的运算,运算后的输出作用于执行器,从而让系统的实际值逐渐靠近目标值。

以大棚温控系统为例,来理解 PID 算法中三个环节的作用。

比例环节( Proportion)

比例环节可以成比例地反应控制系统的偏差信号,即输出与输入偏差成正比,可以用来减小系统的偏差。公式如下:

  • u ——- 输出
  • Kp——- 比例系数
  • e ——- 偏差

我们可以通过大棚温控去理解PID公式。例如需要调节棚内温度为 30℃,而实际温度为 10℃,此时的偏差 e=20,由比例环节的公式可知,当 e 确定时,Kp 越大则输出u 越大,也就是温控系统的调节力度越大,这样就可以更快地达到目标温度;而当 Kp 确定时,偏差 e 越大则输出 u 越大。由此可见,在比例环节中,比例系数 Kp 和偏差 e 越大则系统消除偏差的时间越短,

  • 当 Kp 的值越大时,其对应的橙色曲线达到目标值的时间就越短,与此同时,橙色曲线出现了一定幅度的超调和振荡,这会使得系统的稳定性下降。所以我们在设置比例系数的时候,并不是越大越好,而是要兼顾消除偏差的时间以及整个系统的稳定性。
  • 在实际的应用中,如果仅有比例环节的控制,可能会给系统带来一个问题:静态误差
  • 静态误差是指系统控制过程趋于稳定时,目标值与实测值之间的偏差。

如果我们在需要调节棚内温度为 30℃,而实际温度为 25℃,此时偏差 e=5,Kp 为固定值,那么此时的输出可以让大棚在半个小时之内升温 5℃,而外部的温差可以让大棚在半个小时之内降温 5℃,也就是说,输出 u 的作用刚好被外部影响抵消了,这就使得偏差会一直存在。

我们可以通过增大 Kp 来增大输出,以此消除偏差。在实际应用中,此方法的局限性很大,因为我们不能确定偏差的大小,它是在实时变化的,如果我们把 Kp 设置得太大,就会引入超调和振荡,让整个系统的稳定性变差。因此,为了消除静态误差,我们引入了积分环节。

积分环节(Integral)

积分环节可以对偏差 e 进行积分,只要存在偏差,积分环节就会不断起作用,主要用于消除静态误差,提高系统的无差度。引入积分环节后,比例+积分环节的公式如下:

  • u ——- 输出
  • e ——- 偏差
  • ∑e——- 累计偏差
  • Kp——- 比例系数
  • Ki——- 积分系数

通过以大棚温控分析可以知道,如果温控系统的比例环节作用被抵消,存在静态误差 5℃,此时偏差存在,积分环节会一直累计偏差,以此增大输出,从而消除静态误差。从上述公式中可以得知,当积分系数 Ki 或者累计偏差越大时,输出就越大,系统消除静态误差的时间就越短。

点击 ⑤-1 学习PID--什么是PID - 古月居可查看全文

相关文章:

⑤-1 学习PID--什么是PID

​ PID 算法可以用于温度控制、水位控制、飞行姿态控制等领域。后面我们通过PID 控制电机进行说明。 自动控制系统 在直流有刷电机的基础驱动中,如果电机负载不变,我们只要设置固定的占空比(电压),电机的速度就会稳定在…...

【OTA】STM32-OTA升级——持续更新

【OTA】STM32-OTA升级——持续更新 文章目录 前言一、ymodem串口协议1、Ymodem 协议2、PC3、蓝牙4、WIFI云平台 二、UDS车载协议1.UDS协议 总结 前言 提示:以下是本篇文章正文内容,下面案例可供参考 一、ymodem串口协议 1、Ymodem 协议 STM32 Ymodem …...

java 字符集

ASCII 与 GBK ASCII:英文专用GBK:中文专用 万国码 unicode想要统一这个世界上所有的语言,所以创造了UTF-32但是使用32位,也就是4个字节,对于很多语言来说,过于奢侈,也会造成通信效率和存储效率变低 UTF-8 unicode 创造…...

Alibaba --- 如何写好 Prompt ?

如何写好 Prompt 提示工程(Prompt Engineering)是一项通过优化提示词(Prompt)和生成策略,从而获得更好的模型返回结果的工程技术。总体而言,其实现逻辑如下: (注:示例图…...

用html写一个雨的特效

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>雨特效</title><link rel"stylesheet" href"./style.css"> </head> <body> <div id"wrap-textu…...

前端 接口返回来的照片太大 加载慢如何解决

现象 解决 1. 添加图片懒加载 背景图懒加载 对背景图懒加载做的解释 和图片懒加载不同&#xff0c;背景图懒加载需要使用 v-lazy:background-image&#xff0c;值设置为背景图片的地址&#xff0c;需要注意的是必须声明容器高度。 <div v-for"img in imageList&quo…...

003 传参

文章目录 传参http 状态码传参方式&#xff08;1&#xff09;URL请求参数 key 与 方法中的形参名一致&#xff08;2&#xff09;URL请求参数 key与RequestParam("id") 中的别名一致&#xff08;3&#xff09; 形参是POJO类&#xff0c;URL 参数 key 与pojo类的 set方…...

QT写Windows按键输出(外挂)

一、前言 玩游戏的时候遇到些枯燥无味反反复复的按鼠标键盘的情况时&#xff0c;就想写个外挂自动释放。刚好在学qt所以试验了下QT能不能对外输出按键与鼠标。 二、思路 qt中的按键鼠标全是输入&#xff0c;没有直接对外输出键盘鼠标指令的类&#xff0c;但是我们换个思路&…...

Stable Diffusion之文生图模型训练

1、数据准备 提前准备好一组相关的照片。 在线的图片处理网站 BIRME - Bulk Image Resizing Made Easy 2.0 (Online & Free) 将图片转成统一大小&#xff0c;支持批量处理&#xff0c;效率高 2、生成提示词 进入stable diffusion webui页面 旧版直接使用 train/proproc…...

SpringBoot整合支付宝沙箱支付

环境说明&#xff1a;SpringBoot3.0.2 支付宝沙箱地址&#xff1a;沙箱地址 获取配置信息 因支付需要回调地址&#xff0c;回调地址必须是公网&#xff0c;如果有公网的话&#xff0c;那直接在下面配置文件填写自己的公网&#xff0c;没有的话&#xff0c;就需要我们借助第三…...

探索进程控制第一弹(进程终止、进程等待)

文章目录 进程创建初识fork函数fork函数返回值fork常规用法fork调用失败的原因 写时拷贝进程终止进程终止是在做什么&#xff1f;进程终止的情况代码跑完&#xff0c;结果正确/不正确代码异常终止 如何终止 进程等待概述进程等待方法wait方法waitpid 进程创建 初识fork函数 在…...

在mac环境下使用shell脚本实现tree命令

文章目录 使用ls实现tree使用find实现tree 使用ls实现tree 实现思路 使用ls -F 打印文件类型&#xff0c;如果是目录后面跟/&#xff0c;如果是可执行文件后面跟*&#xff1b;使用grep -v /$ 筛选文件排除目录&#xff0c;-v为反向筛选&#xff1b;使用grep /$ 仅筛选目录&am…...

递归时间复杂度分析方法:Master 定理

编写算法时&#xff0c;可能因为对自己代码的复杂度的不清晰而导致错失良机&#xff0c;对于普通的递推或者说循环的代码&#xff0c;仅用简单的调和级数或者等差数列和等比数列即可分析&#xff0c;但是对于递归的代码&#xff0c;简单的递归树法并不方便&#xff0c;理解并记…...

实例名不规范导致mds创建失败

概述 在部署ceph集群时&#xff0c;规划主机名、关闭防火墙、配置免密、关闭selinux&#xff0c;配置hosts文件这几步同样重要&#xff0c;都是初期部署一次麻烦&#xff0c;方便后续运维的动作。遇到过很多前期稀里糊涂部署&#xff0c;后续运维和配置时候各种坑。 近期遇到…...

OpenGL中的纹理过滤GL_NEAREST和GL_LINEAR

一、GL_NEAREST&#xff08;最近邻插值&#xff09; 1.1 原理 当需要从纹理中采样颜色时&#xff0c;GL_NEAREST模式会选择离采样点最近的纹理像素&#xff08;通常是最接近采样点的纹理元素的中心&#xff09;&#xff0c;并直接使用该像素的颜色值作为输出。这种模式不进行任…...

vue 性能优化

data 层级不要太深 data 层级太深会增加响应式监听的计算&#xff0c;导致页面初次渲染时卡顿。 合理使用 v-show 和 v-if 频繁切换时&#xff0c;使用 v-show无需频繁切换时&#xff0c;使用 v-if 合理使用 computed computed 有缓存&#xff0c;data 不变时不会重新计算&…...

互联网大厂ssp面经(操作系统:part1)

1. 什么是进程和线程&#xff1f;它们之间有什么区别&#xff1f; a. 进程是操作系统中运行的一个程序实例。它拥有独立的地址空间和资源&#xff0c;可以独立执行。 b. 线程是进程内的一个执行单元&#xff0c;一个进程可以包含多个线程。 c. 线程共享进程的资源&#xff0c;…...

Android Activity 启动涉及几个进程

Zygote进程: Zygote进程在Android系统启动时被初始创建&#xff0c;并且初始化了虚拟机&#xff08;Dalvik或ART&#xff09;&#xff0c;预加载了Android系统的核心类库。所有的Android应用进程都是通过fork()从Zygote进程派生出来的&#xff0c;这允许应用快速启动&#xff0…...

说说你对链表的理解?常见的操作有哪些?

一、是什么 链表&#xff08;Linked List&#xff09;是一种物理存储单元上非连续、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的&#xff0c;由一系列结点&#xff08;链表中每一个元素称为结点&#xff09;组成 每个结点包括两个部分&…...

每天五分钟深度学习:逻辑回归算法的损失函数和代价函数是什么?

本文重点 前面已经学习了逻辑回归的假设函数,训练出模型的关键就是学习出参数w和b,要想学习出这两个参数,此时需要最小化逻辑回归的代价函数才可以训练出w和b。那么本节课我们将学习逻辑回归算法的代价函数是什么? 为什么不能平方差损失函数 线性回归的代价函数我们使用…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...