基于轻量级YOLOv5开发构建汉字检测识别分析系统
汉字检测、字母检测、手写数字检测、藏文检测、甲骨文检测在我之前的文章中都有做过了,今天主要是因为实际项目的需要,之前的汉字检测模型较为古老了还使用的yolov3时期的模型,检测精度和推理速度都有不小的滞后了,这里要基于yolov5轻量级的模型来开发构建新版的目标检测模型,首先看下效果图:

接下来简单看下数据集情况:

YOLO格式标注文件截图如下:

实例标注内容如下所示:
17 0.245192 0.617788 0.038462 0.038462
6 0.102163 0.830529 0.045673 0.045673
16 0.894231 0.096154 0.134615 0.134615
4 0.456731 0.524038 0.134615 0.134615
15 0.367788 0.317308 0.269231 0.269231
VOC格式数据标注文件截图如下:

实例标注内容如下所示:
<annotation><folder>DATASET</folder><filename>0ace8eaf-8e86-488b-9229-95255c69158c.jpg</filename><source><database>The DATASET Database</database><annotation>DATASET</annotation><image>DATASET</image></source><owner><name>YMGZS</name></owner> <size><width>416</width><height>416</height><depth>3</depth></size><segmented>0</segmented><object> <name>17</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>214</xmin><ymin>302</ymin><xmax>230</xmax><ymax>318</ymax></bndbox></object><object> <name>16</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>210</xmin><ymin>67</ymin><xmax>229</xmax><ymax>86</ymax></bndbox></object><object> <name>18</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>260</xmin><ymin>7</ymin><xmax>274</xmax><ymax>21</ymax></bndbox></object><object> <name>10</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>121</xmin><ymin>103</ymin><xmax>143</xmax><ymax>125</ymax></bndbox></object><object> <name>11</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>296</xmin><ymin>289</ymin><xmax>352</xmax><ymax>345</ymax></bndbox></object><object> <name>0</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>56</xmin><ymin>132</ymin><xmax>196</xmax><ymax>272</ymax></bndbox></object><object> <name>0</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>213</xmin><ymin>142</ymin><xmax>353</xmax><ymax>282</ymax></bndbox></object></annotation>因为是主打轻量级网络,这里选择了也是最为轻量级的n系列的模型,最终训练得到的模型文件不足4MB大小,网络结构图如下所示:

默认100次epoch的计算,结果目录如下所示:
【混淆矩阵】

【F1值曲线】

【PR曲线】

【训练日志可视化】

【batch计算实例】

可视化界面推理样例如下:



从评估指标结果上面来看检测效果还是很不错的。

相关文章:
基于轻量级YOLOv5开发构建汉字检测识别分析系统
汉字检测、字母检测、手写数字检测、藏文检测、甲骨文检测在我之前的文章中都有做过了,今天主要是因为实际项目的需要,之前的汉字检测模型较为古老了还使用的yolov3时期的模型,检测精度和推理速度都有不小的滞后了,这里要基于yolo…...
leetcode-每日一题-66(简单题,数组)
这道题其实还没那么简单,中间还是有的绕的。。。。给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。你可以假设除了整数 0 之外,这个整数不会…...
LeetCode295之数据流的中位数(相关话题:优先队列)
题目描述 中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。 例如 arr [2,3,4] 的中位数是 3 。例如 arr [2,3] 的中位数是 (2 3) / 2 2.5 。 实现 MedianFinder 类: MedianFinder() 初始化 Media…...
助你加速开发效率!告别IDEA卡顿困扰的性能优化技巧
在现代软件开发中,IDE(集成开发环境)是一个必不可少的工具。IntelliJ IDEA是一个广受欢迎的IDE,但有时候IDE的性能可能会受到影响,导致开发人员的工作效率降低。本文将介绍一些可以提高IDE性能的技巧,帮助开…...
Java设计模式-适配器模式
1、简介 适配器模式是作为两个不兼容的接口之间的桥梁。这种类型的设计模式属于结构型模式,它结合了两个独立接口的功能。 这种模式涉及到一个单一的类,该类负责加入独立的或不兼容的接口功能。 2、适配器模式分类 目标接口(Target&#x…...
Linux 练习六 (IPC 管道)
文章目录1 标准管道流2 无名管道(PIPE)3 命名管道(FIFO)3.1 创建删除管道文件3.2 打开和关闭FIFO文件3.3 管道案例:基于管道的客服端服务器程序使用环境:Ubuntu18.04 使用工具:VMWare workstati…...
合并两个有序链表(精美图示详解哦)
全文目录引言合并两个有序链表题目描述方法一:将第二个链表合并到第一个思路实现方法二:尾插到哨兵位的头节点思路实现总结引言 在前面两篇文章中,我们介绍了几道链表的习题:反转链表、链表的中间结点、链表的倒数第k个结点&…...
33 JSON操作
目录 一、介绍 二、JSON的特点 三、JSON语法 1、json中的数据类型 四、JSON文件的定义 五、读取JSON文件 1、读取json文件的两种方式 (1)read、write (2)json.load 2、使用json.load读取json文件的步骤 3、练习读取json文件 六、练…...
三八妇女节快乐----IT女神活动随笔
献丑了,一首小小散文诗,请大家轻喷 O(≧口≦)O 我的答案 天下芸芸众生,好似夜幕漫天繁星。 与你相识,只是偶然。 简单的一个招呼,于是开始了一段故事。 我们或是诉说,或是分享; 我们彼此倾听&…...
【PSO-PID】使用粒子群算法整定PID参数控制起动机入口压力值
最近在学优化算法,接触到了经典寻优算法之粒子群PSO,然后就想使用PSO算法来调节PID参数,在试验成功之后将此控制算法应用到了空气起动系统上,同时与之前的控制器进行对比看看哪种控制效果最好。 0 引言 PID参数整定主要有两种&…...
当代数据分析指南:激发商业洞见的七个方法(上)
如果说眼下的发生的事能证明什么,那就是基于实时可信的数据分析正在变得越来越重要。但是要是想要在需要的时候准确地获取中肯的洞察,我们所需要的可不只是漂亮的可视化。 如何让你的员工都有能力和机会都做出最好的决策,不管这个决策会有多…...
javaWeb核心02-JSP、EL、JSTL、MVC
文章目录JSP1,JSP 概述2,JSP 快速入门2.1 搭建环境2.2 导入 JSP 依赖2.3 创建 jsp 页面2.4 编写代码2.5 测试3,JSP 原理4,JSP 脚本4.1 JSP 脚本分类4.2 案例4.2.1 需求4.2.2 实现4.2.3 成品代码4.2.4 测试4.3 JSP 缺点5࿰…...
spring-boot+mybatis-plus连接Oracle数据库,及查询相关数据
配置java 略(这里我用的是jdk1.8) 配置maven 环境变量: M2_HOME:D:\LJ\software\java\maven\apache-maven-3.6.3 Path:%M2_HOME%\bin 仓库/jdk/镜像云设置(./config/sitting) 仓库 <localRepository> D:/…...
电商使用CRM系统有什么好处,如何选择
数据显示,使用电商CRM客户管理系统后,企业销售额提高了87%,客户满意度提高了74%,业务效率提高了73%。要在竞争激烈的电商市场取得成功,与目标受众的有效沟通是有效的方法。下面说说什么是电商CRM系统?电商C…...
Nacos2.2.0多数据源适配oracle12C-修改Nacos源码
从2.2.0版本开始,可通过SPI机制注入多数据源实现插件,并在引入对应数据源实现后,便可在Nacos启动时通过读取application.properties配置文件中spring.datasource.platform配置项选择加载对应多数据源插件.本文档详细介绍一个多数据源插件如何实现以及如何使其生效。 文章目录一…...
第十四届蓝桥杯三月真题刷题训练——第 5 天
目录 题目1:数的分解 题目描述 运行限制 代码: 题目2:猜生日 题目描述 运行限制 代码: 题目3:成绩分析 题目描述 输入描述 输出描述 输入输出样例 运行限制 代码: 题目4:最大和…...
大数据框架之Hive:第3章 DDL(Data Definition Language)数据定义
第3章 DDL(Data Definition Language)数据定义 3.1 数据库(database) 3.1.1 创建数据库 1)语法 CREATE DATABASE [IF NOT EXISTS] database_name [COMMENT database_comment] [LOCATION hdfs_path] [WITH DBPROPER…...
概率论小课堂:统计学是大数据方法的基础
文章目录 引言I 统计学1.1 统计学的内容1.2 统计学的目的II 用好数据的五个步骤2.1 设立研究目标2.2 设计实验,选取数据。2.3 根据实验方案进行统计和实验,分析方差。2.4 通过分析进一步了解数据,提出新假说。2.5 使用研究结果III 数据没用好的原因3.1 霍桑效应3.2 数据的稀…...
监控集群概念讲解
监控概述 1、监控的重要性 监控是运维日常的重要工作之一; 监控是有多重要? 监控可以帮助运维监控服务器的状态;要及时解决; 如果淘宝、腾讯宕机了1个小时? 损失是无法估量的; 服务器是否故障、宕不…...
如何通过DAS连接GaussDB
文章目录1 实验介绍2 实验目的3 配置DAS服务4 SQL使用入门1 实验介绍 本实验主要描述如何通过华为云数据管理服务 (Data Admin Service,简称DAS) 来连接华为云GaussDB数据库实例,DAS是一款专业的简化数据库管理工具,提供优质的可视化操作界面…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
