【动态规划】
动态规划1
- 引言
- 题目
- 509. 斐波那契数
- 70. 爬楼梯
- 746. 使用最小花费爬楼梯
- 小结
- 53. 最大子数组和
- 结语
引言
蓝桥杯快开始了啊,自从报名后还没认真学过算法有`(>﹏<)′,临时抱一下佛脚,一起学学算法。
题目
509. 斐波那契数
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。
链接: link
相信这题大家都能闭着眼睛都能写出来了。
这是一个最基础的递推题目
递推公式为**F(n) = F(n - 1) + F(n - 2)
**
1.定义一个数组arr[n+1], 用来记录n位置的斐波那契数值
2.定义一个循环变量i 然后进行循环F(i) = F(i - 1) + F(i - 2)
3.返回arr[n]
代码:
int fib(int n){if(n<=1){return n;}else{int arr[n+1];arr[0]=0;arr[1]=1;for(int i=2;i<=n;i++){arr[i]=arr[i-1]+arr[i-2];}return arr[n];}
}
70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
链接: 爬楼梯
这道题就是斐波那契数列的简单应用,只是在斐波那契数列是套了一层外套
1.当你在n阶楼梯时
2.只能由n-1阶时走一步或者在n-2阶时走两步
3.所以爬到n阶的方法总数等于爬n-1阶时的方法数加上爬到n-2阶的方法数
也就是F(n)=F(n-1)+F(n-2)
(状态转移方程)
代码:
int climbStairs(int n){int arr[46]={1,1};for(int i=2;i<=n;i++){arr[i]=arr[i-1]+arr[i-2];}return arr[n];
}
746. 使用最小花费爬楼梯
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。 总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。 总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
链接: 使用最小花费爬楼梯
这题和之前的爬楼梯很相似,只是从求方案数到求最小值。
求解思路:
当你在 n 阶楼梯时
只能由 n-1 阶时走一步或者在 n-2 阶时走两步
当选择走 n-1 其花费也是走到 n-1 步时的最小花费加上走这一步的花费
n-2 其花费也是走到 n-2 步时的最小花费加上走这一步的花费
arr[n]值就是两者之间的最小值
定义一个数组arr[1001
],用来存储走到n阶楼梯时的最小花费
我们可以得出状态转移方程为
arr[i]=min(arr[i-1]+cost[i-1],arr[i-2]+cost[i-2])
代码:
int min(int a,int b)
{if(a>b)return b;return a;
}int minCostClimbingStairs(int* cost, int costSize){int arr[1001]={0,0};for(int i=2;i<=costSize;i++){arr[i]=min(arr[i-1]+cost[i-1],arr[i-2]+cost[i-2]); }return arr[costSize];
}
小结
从上述三题可以看出动态规划的大致流程
1.设计状态
2.写出状态转移方程
3.设定初始状态
4.执行状态转移
5.返回最终的解
接下来我们在看一个题
53. 最大子数组和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
题解:
定义一个dp[100001]数组,用于储存以nums[n]为结尾的子数组的和的最大值。
然后根据题意可知,dp[n]的值有两种情况:
第一种:
- 当dp[n-1]<=0时,
- 表示的是以nums[n-1]结尾的所有子数组的最大值小于0,
- 此时dp[n]的值应该是arr[n]的值,因为一个数加上一个小于0的数总比原数小。
第二种:
- 当dp[n-1]>0时,
- dp[n]的值应该取dp[n-1]和dp[n-1]+nums[n]这两数中的最大值
可得状态转移方程为dp[n]=max(dp[n-1]+nums[n],nums[n])
设置初始状态 dp[0]=arr[0]
代码:
int max(int i,int j)
{if(i>j)return i;return j;
}int maxSubArray(int* nums, int numsSize){int dp[100001]={};dp[0]=nums[0];int maxval=nums[0];for(int n=1;n<numsSize;n++){dp[n]=max(dp[n-1]+nums[n],nums[n]);maxval=max(maxval,dp[n]);}return maxval;
}
结语
本期动态规划就到这了
我是Tom-猫
如果觉得有帮助的话,记得
一键三连哦ヾ(≧▽≦*)o。
相关文章:

【动态规划】
动态规划1引言题目509. 斐波那契数70. 爬楼梯746. 使用最小花费爬楼梯小结53. 最大子数组和结语引言 蓝桥杯快开始了啊,自从报名后还没认真学过算法有(>﹏<)′,临时抱一下佛脚,一起学学算法。 题目 509. 斐波那契数 斐波那契数 &am…...

秒懂算法 | DP概述和常见DP面试题
动态(DP)是一种算法技术,它将大问题分解为更简单的子问题,对整体问题的最优解决方案取决于子问题的最优解决方案。本篇内容介绍了DP的概念和基本操作;DP的设计、方程推导、记忆化编码、递推编码、滚动数组以及常见的DP面试题。 01、DP概述 1. DP问题的特征 下面以斐波那…...
【C++提高编程】C++全栈体系(二十五)
C提高编程 第四章 STL- 函数对象 一、函数对象 1. 函数对象概念 概念: 重载函数调用操作符的类,其对象常称为函数对象函数对象使用重载的()时,行为类似函数调用,也叫仿函数 本质: 函数对象(仿函数)是一个类&…...

【云原生】k8s核心技术—集群安全机制 Ingress Helm 持久化存储-20230222
文章目录一、k8s集群安全机制1. 概述2. RBAC——基于角色的访问控制二、Ingress三、Helm1. 引入2. 使用功能Helm可以解决哪些问题3. 介绍4. 3个重要概念5. helm 版本变化6. helm安装及配置仓库7. 使用helm快速部署应用8. 自己创建chart9. 实现yaml高效复用四、持久化存储1.nfs—…...

【Linux】实现简易的Shell命令行解释器
大家好我是沐曦希💕 文章目录一、前言二、准备工作1.输出提示符2.输入和获取命令3.shell运行原理4.内建命令5.替换三、整体代码一、前言 前面学到了进程创建,进程终止,进程等待,进程替换,那么通过这些来制作一个简易的…...

再获认可!腾讯安全NDR获Forrester权威推荐
近日,国际权威研究机构Forrester发布最新研究报告《The Network Analysis And Visibility Landscape, Q1 2023》(以下简称“NAV报告”),从网络分析和可视化(NAV)厂商规模、产品功能、市场占有率及重点案例等…...

代码审计之旅之百家CMS
前言 之前审计的CMS大多是利用工具,即Seay昆仑镜联动扫描出漏洞点,而后进行审计。感觉自己的能力仍与零无异,因此本次审计CMS绝大多数使用手动探测,即通过搜索危险函数的方式进行漏洞寻找,以此来提升审计能力…...

ONLYOFFICE中利用chatGPT帮助我们策划一场生日派对
近日,人工智能chatGPT聊天机器人爆火,在去年年底发布后,仅仅两个月就吸引了全球近一亿的用户,成为史上最快的应用消费程序,chatGPT拥有强大的学习和交互能力 可以被学生,教师,上班族各种职业运…...
Java面试题-线程(一)
在典型的 Java 面试中, 面试官会从线程的基本概念问起, 如:为什么你需要使用线程,如何创建线程,用什么方式创建线程比较好(比如:继承 thread 类还是调用 Runnable 接口),…...

一篇普通的bug日志——bug的尽头是next吗?
文章目录[bug 1] TypeError: method object is not subscriptable[bug 2] TypeError: unsupported format string passed to numpy.ndarray.__format__[bug 3] ValueError:Hint: Expected dtype() paddle::experimental::CppTypeToDataType<T>::Type()[bug 4] CondaSSLE…...
Vue 3 第八章:Watch侦听器
文章目录Watch侦听器1. 基础概念1.1. Watch的基本用法例子1:监听单个ref的值,直接监听例子2:监听多个ref的值,采用数组形式例子3:深度监听例子4:监听reactive响应式对象单一属性,采用回调函数的…...

GlassFish的安装与使用
一、产品下载与安装glassfish下载地址:https://download.oracle.com/glassfish/5.0.1/release/index.html下载后解压即完成安装,主要目录说明:bin目录:为asadmin命令所在目录。glassfish为主目录:glassfish\bin目录为命…...

【java】Java 重写(Override)与重载(Overload)
文章目录重写(Override)方法的重写规则Super 关键字的使用重载(Overload)重载规则实例重写与重载之间的区别总结重写(Override) 重写是子类对父类的允许访问的方法的实现过程进行重新编写, 返回值和形参都不能改变。即外壳不变,核心重写! 重写的好处在于…...

OpenCV-PyQT项目实战(12)项目案例08:多线程视频播放
欢迎关注『OpenCV-PyQT项目实战 Youcans』系列,持续更新中 OpenCV-PyQT项目实战(1)安装与环境配置 OpenCV-PyQT项目实战(2)QtDesigner 和 PyUIC 快速入门 OpenCV-PyQT项目实战(3)信号与槽机制 …...

面向对象设计模式:结构型模式之装饰器模式
文章目录一、引入二、装饰器模式2.1 Intent 意图2.2 Applicability 适用性2.3 类图2.4 优缺点2.5 应用实例:Java IO 类2.6 应用实例:咖啡馆订购系统一、引入 咖啡馆订购系统 Initial 初始 4 种咖啡 House blend (混合咖啡)Dark Roast (深度烘培)Decaf (…...

Unity iOS 无服务器做一个排行榜 GameCenter
排行榜需求解决方案一(嗯目前只有一)UnityEngine.SocialPlatformsiOS GameCenterAppStoreConnect配置Unity 调用(如果使用GameCenter系统的面板,看到这里就可以了)坑(需要获取数据做自定义面板的看这里)iOS代码Unity 代码吐槽需求 需求:接入…...

现在招个会自动化测试的人是真难呀~你会个锤子的自动化测试
现在招个会自动化测试的人是真难呀~ 前一段时间公司计划要招2个自动化测试到岗,同事面试了十几个来应聘的人,发现一个很奇怪的现象,在面试的时候,如果问的是框架API、脚本编写这些问题,基本上所有人都能对答如流&…...
OracleDatabase——数据库表空间dmp导出与导入
由于公司的程序一直部署在客户现场内网,内网调试难度高,一般是有备份还原数据库的需求,这里简记备份(导出)数据库dmp文件与恢复(导入)的步骤。 一、导出dmp文件 exp与expdp命令异同 相同点&a…...

20张图带你彻底了解ReentrantLock加锁解锁的原理
哈喽大家好,我是阿Q。 最近是上班忙项目,下班带娃,忙的不可开交,连摸鱼的时间都没有了。今天趁假期用图解的方式从源码角度给大家说一下ReentrantLock加锁解锁的全过程。系好安全带,发车了。 简单使用 在聊它的源码…...
Dockerfile构建Springboot镜像
Dockerfile构建Springboot镜像 文章目录 Dockerfile构建Springboot镜像 简介实例演示 前期准备 Docker环境Springboot项目Dockerfile文件 Windows 要求构建镜像启动测试 Linux 要求构建镜像启动测试 简介 容器技术大流行的时代,也是docker大流行的时代。 此文…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...