python绘图(pandas)
matplotlib绘图
import pandas as pd
abs_path = r'F:\Python\learn\python附件\pythonCsv\data.csv'
df = pd.read_csv(abs_path, encoding='gbk')
# apply根据多列生成新的一个列的操作,用apply
df['new_score'] = df.apply(lambda x : x.数学 + x.语文, axis=1)# 最后几行
df.tail(2)
| 序号 | 姓名 | 性别 | 语文 | 数学 | 英语 | 物理 | 化学 | 生物 | new_score | |
|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 6 | 李四 | 女 | 80 | 80 | 80 | 80 | 80 | 80 | 160 |
| 6 | 7 | 王五 | 男 | 70 | 70 | 70 | 70 | 70 | 70 | 140 |
df = df.drop(['new_score'],axis=1)
df.head()
| 序号 | 姓名 | 性别 | 语文 | 数学 | 英语 | 物理 | 化学 | 生物 | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 渠敬辉 | 男 | 80 | 60 | 30 | 40 | 30 | 60 |
| 1 | 2 | 韩辉 | 男 | 90 | 95 | 75 | 75 | 80 | 85 |
| 2 | 3 | 韩文晴 | 女 | 95 | 80 | 85 | 60 | 80 | 90 |
| 3 | 4 | 石天洋 | 男 | 90 | 90 | 95 | 80 | 75 | 80 |
| 4 | 5 | 张三 | 男 | 60 | 60 | 60 | 60 | 60 | 60 |
绘图
import numpy as np
import matplotlib.pyplot as plt%matplotlib inline
# 上一行是必不可少的,不加这一行就不会显示到notebook之中
---------------------------------------------------------------------------ModuleNotFoundError Traceback (most recent call last)<ipython-input-11-e41dd406839b> in <module>1 import numpy as np
----> 2 import matplotlib.pyplot as plt3 4 get_ipython().run_line_magic('matplotlib', 'inline')5 # 上一行是必不可少的,不加这一行就不会显示到notebook之中G:\Anaconda\lib\site-packages\matplotlib\pyplot.py in <module>30 from cycler import cycler31 import matplotlib
---> 32 import matplotlib.colorbar33 import matplotlib.image34 from matplotlib import rcsetup, styleG:\Anaconda\lib\site-packages\matplotlib\colorbar.py in <module>25 26 import matplotlib as mpl
---> 27 import matplotlib.artist as martist28 import matplotlib.cbook as cbook29 import matplotlib.collections as collectionsModuleNotFoundError: No module named 'matplotlib.artist'
x = np.linspace(1,10,100)
y = np.sin(x)plt.plot(x,y)
plt.plot(x,np.cos(x))
[<matplotlib.lines.Line2D at 0x23236b74ec8>]

plt.plot(x,y,'--')
[<matplotlib.lines.Line2D at 0x23236c26108>]

fig = plt.figure()
plt.plot(x,y,'--')
[<matplotlib.lines.Line2D at 0x23236c9bac8>]

fig.savefig('F:/Python/learn/python附件/python图片/first_figure.png')
# 虚线样式
plt.subplot(2,1,2)
plt.plot(x,np.sin(x),'--')plt.subplot(2,1,1)
plt.plot(x,np.cos(x))
[<matplotlib.lines.Line2D at 0x23236e1bec8>]

# 点状样式
x = np.linspace(0,10,20)
plt.plot(x,np.sin(x),'o')
[<matplotlib.lines.Line2D at 0x23236f99048>]

# color控制颜色
x = np.linspace(0,10,20)
plt.plot(x,np.sin(x),'o',color='red')
[<matplotlib.lines.Line2D at 0x23237147188>]

# 加label
x = np.linspace(0,10,100)
y = np.sin(x)plt.plot(x,y,'--',label='sin(x)')
plt.plot(x,np.cos(x),'o',label='cos(x)')
# legend控制label的显示效果,loc是控制label的位置的显示
plt.legend(loc='upper right')
<matplotlib.legend.Legend at 0x23238463848>

plt.legend?
# 当遇到一个不熟悉的函数的时候,多使用?号,查看函数的文档
#plot函数,可定制的参数非常多
x = np.linspace(0,10,20)
y = np.sin(x)
plt.plot(x,y,'-d',color='orange',markersize=16,linewidth=2,markeredgecolor='gray',markeredgewidth=1)
(-0.5, 1.2)

# 具体参数可查看文档
plt.plot?
# ylim xlim 限定范围
plt.plot(x,y,'-d',color='orange',markersize=16,linewidth=2,markeredgecolor='gray',markeredgewidth=1)
plt.ylim(-0.5,1.2)
plt.xlim(2,8)
(2, 8)

# 散点图
plt.scatter(x,y,s=100, c='gray')
<matplotlib.collections.PathCollection at 0x23239ef89c8>

plt.style.use('seaborn-whitegrid')x = np.random.randn(100)
y = np.random.randn(100)
colors = np.random.rand(100)
sizes = 1000 * np.random.rand(100)
plt.scatter(x,y,c=colors,s=sizes,alpha=0.4)
plt.colorbar()
<matplotlib.colorbar.Colorbar at 0x23239c7f948>

pandas本身自带绘图
线型图
df = pd.DataFrame(np.random.rand(100,4).cumsum(0),columns=['A','B','C','D'])
df.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x2323c0c8bc8>

】
df.A.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x2323c15e648>

】
柱状图
df = pd.DataFrame(np.random.randint(10,50,(3,4)),columns=['A','B','C','D'],index=['one','two','three'])
df.plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x2323c93ea88>

# df.B.plot.bar()
# 等价于上面的绘制
df.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x2323c75e348>

df.plot(kind='bar',stacked=True)
<matplotlib.axes._subplots.AxesSubplot at 0x2323c86e648>

直方图
df = pd.DataFrame(np.random.randn(100,4),columns=['A','B','C','D'])
df.hist(column='A',figsize=(5,4))
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000002323EB7DFC8>]],dtype=object)

密度图
df.plot.kde() # df.plot(kind='kde')
<matplotlib.axes._subplots.AxesSubplot at 0x2323cd84808>

3D图
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as npfig = plt.figure()
ax = fig.gca(projection='3d')# Make data
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2+Y**2)
Z = np.sin(R)#Plot the surface
surf = ax.plot_surface(X,Y,Z,cmap=cm.coolwarm,linewidth=0,antialiased=False)# Customize the z axis
ax.set_zlim(-1.01,1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))#Add a colcr bar which maps values to colors
fig.colorbar(surf, shrink=0.5, aspect=5)plt.show()
G:\Anaconda\lib\site-packages\ipykernel_launcher.py:8: MatplotlibDeprecationWarning: Calling gca() with keyword arguments was deprecated in Matplotlib 3.4. Starting two minor releases later, gca() will take no keyword arguments. The gca() function should only be used to get the current axes, or if no axes exist, create new axes with default keyword arguments. To create a new axes with non-default arguments, use plt.axes() or plt.subplot().

#再画一个利用coolwarm类型的图
import pylab as plt
import numpy as np
#数据处理
X=np.linspace(-6,6,1000)
Y=np.linspace(-6,6,1000)
X,Y=np.meshgrid(X,Y)
#设置绘图
#推荐plt.axes的写法,不容易出现图像显示空白的情况
ax=plt.axes(projection="3d")Z=np.sin(np.sqrt(X*X+Y*Y))surf=ax.plot_surface(X,Y,Z,cmap="coolwarm")
plt.colorbar(surf)
ax.set_xlabel("X",color='r')
ax.set_ylabel("Y",color='r')
plt.title("3D CoolWarm Surface", fontsize=10)
plt.savefig('F:/Python/learn/python附件/python图片/first_figure.png', dpi=500, bbox_inches='tight')
plt.show()

3D绘图实例
# 第一步 import导包import numpy as np
import matplotlib as mpl
from matplotlib import cm
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 第二步 水平和垂直平面# 创建画布
fig = plt.figure(figsize=(12, 8),facecolor='lightyellow')# 创建 3D 坐标系
ax = fig.gca(fc='whitesmoke',projection='3d' )# 二元函数定义域平面
x = np.linspace(0, 9, 9)
y = np.linspace(0, 9, 9)
X, Y = np.meshgrid(x, y)# -------------------------------- 绘制 3D 图形 --------------------------------
# 平面 z=4.5 的部分
ax.plot_surface(X,Y,Z=X*0+4.5,color='g',alpha=0.6) # 平面 y=4.5 的部分
ax.plot_surface(X,Y=X*0+4.5,Z=Y,color='y',alpha=0.6) # 平面 x=4.5 的部分
ax.plot_surface(X=X*0+4.5,Y=Y,Z=X, color='r',alpha=0.6)
# -------------------------------- --------------------------------
# 设置坐标轴标题和刻度
ax.set(xlabel='X',ylabel='Y',zlabel='Z',xlim=(0, 9),ylim=(0, 9),zlim=(0, 9),xticks=np.arange(0, 10, 2),yticks=np.arange(0, 10, 1),zticks=np.arange(0, 10, 1))# 调整视角
ax.view_init(elev=15, # 仰角azim=60 # 方位角)# 显示图形
plt.show()
G:\Anaconda\lib\site-packages\ipykernel_launcher.py:16: MatplotlibDeprecationWarning: Calling gca() with keyword arguments was deprecated in Matplotlib 3.4. Starting two minor releases later, gca() will take no keyword arguments. The gca() function should only be used to get the current axes, or if no axes exist, create new axes with default keyword arguments. To create a new axes with non-default arguments, use plt.axes() or plt.subplot().app.launch_new_instance()

# 第三步 斜平面# 创建画布
fig = plt.figure(figsize=(12, 8),facecolor='lightyellow')# 创建 3D 坐标系
ax = fig.gca(fc='whitesmoke',projection='3d' )# 二元函数定义域
x = np.linspace(0, 9, 9)
y = np.linspace(0, 9, 9)
X, Y = np.meshgrid(x, y)# -------------------------------- 绘制 3D 图形 --------------------------------
# 平面 z=3 的部分
ax.plot_surface(X,Y,Z=X*0+3,color='g')
# 平面 z=2y 的部分
ax.plot_surface(X,Y=Y,Z=Y*2,color='y',alpha=0.6)
# 平面 z=-2y + 10 部分
ax.plot_surface(X=X,Y=Y,Z=-Y*2+10,color='r',alpha=0.7)
# -------------------------------- --------------------------------# 设置坐标轴标题和刻度
ax.set(xlabel='X',ylabel='Y',zlabel='Z',xlim=(0, 9),ylim=(0, 9),zlim=(0, 9),xticks=np.arange(0, 10, 2),yticks=np.arange(0, 10, 1),zticks=np.arange(0, 10, 1))# 调整视角
ax.view_init(elev=15, # 仰角azim=10 # 方位角)# 显示图形
plt.show()
G:\Anaconda\lib\site-packages\ipykernel_launcher.py:10: MatplotlibDeprecationWarning: Calling gca() with keyword arguments was deprecated in Matplotlib 3.4. Starting two minor releases later, gca() will take no keyword arguments. The gca() function should only be used to get the current axes, or if no axes exist, create new axes with default keyword arguments. To create a new axes with non-default arguments, use plt.axes() or plt.subplot().# Remove the CWD from sys.path while we load stuff.

相关文章:
python绘图(pandas)
matplotlib绘图 import pandas as pd abs_path rF:\Python\learn\python附件\pythonCsv\data.csv df pd.read_csv(abs_path, encodinggbk) # apply根据多列生成新的一个列的操作,用apply df[new_score] df.apply(lambda x : x.数学 x.语文, axis1)# 最后几行 …...
Android(Java)项目支持Kotlin语言开发
Android(Java)项目通过相关Kotlin设置后,允许同时使用Java语言和Kotlin语言进行开发代码的。 示例环境: Android Studio Giraffe | 2022.3.1 Patch 3 Java 8 Kotlin 1.9.20 设置Kotlin选项: 第一步:在项…...
Terraform创建模块
模块就是包含一组Terraform代码的文件夹,可以通过模块直接使用别人编写好的Terraform代码来创建资源。 Terraform模块是编写高质量Terraform代码,提升代码复用性的重要手段,可以说,一个成熟的生产环境应该是由数个可信成熟的模块组…...
《华为鸿蒙:从备胎到主角的崛起之路》
华为鸿蒙操作系统的发展历程可以追溯到 2012 年,当时华为开始规划自有操作系统鸿蒙 OS。然而,直到 2019 年 5 月,鸿蒙才正式进入开发阶段。 2019 年 8 月 9 日,华为正式发布了鸿蒙操作系统。 鸿蒙系统的首个版本是于 2019 年推出…...
FPGA学习笔记(2)——Verilog语法及ModelSim使用
1.1 语法 1、赋值语句 和 < 为阻塞赋值,当该语句结束时,下一个语句才开始执行,串行执行 < 为非阻塞幅值,该语句和整个语句块同时执行,并行执行 1.2 ModelSim使用 1、修改源文件路径:File -> …...
2024年十大AI工具,让你的工作学习效率飞跃
在这个迅速变化的数字时代,人工智能技术正在以前所未有的速度发展和革新。AI技术不仅深入科研、医疗和教育等领域,还广泛应用于日常生活和商业活动中。本文梳理了2024年十款最好用的AI工具,它们各有特色,能极大提升工作效率和生活…...
linux之NAMP
linux之NAMP Nmap(Network Mapper)是一个开源的网络扫描和安全审计工具。它被设计用来快速地扫描大型网络,尽管它也可以对单个主机进行有效的扫描。Nmap利用原始IP数据包以多种方式探测目标网络上的主机、服务(应用程序名称和版本…...
uniapp 禁止截屏(应用内,保护隐私)插件 Ba-ScreenShot
禁止截屏(应用内,保护隐私) Ba-ScreenShot 简介(下载地址) Ba-ScreenShot 是一款uniapp禁止应用内截屏的插件,保护隐私,支持禁止截屏、放开截屏 截图展示 也可关注博客,实时更新最…...
数字电路-5路呼叫显示电路和8路抢答器电路
本内容涉及两个电路,分别为5路呼叫显示电路和8路抢答器电路,包含Multisim仿真原文件,为掌握FPGA做个铺垫。紫色文字是超链接,点击自动跳转至相关博文。持续更新,原创不易! 目录: 一、5路呼叫显…...
C++中的函数签名
前言: 很多C初学者会发现函数签名这一概念在C的学习过程中经常出现,然而很多人往往不太了解函数签名包括些什么,本文章将从一个初学者的角度出发,详细解释函数签名这一概念。 在C中,函数签名用于唯一地识别函数重载。…...
Mac brew安装Redis之后更新配置文件的方法
安装命令 brew install redis 查看安装位置命令 brew list redis #查看redis安装的位置 % brew list redis /usr/local/Cellar/redis/6.2.5/.bottle/etc/ (2 files) /usr/local/Cellar/redis/6.2.5/bin/redis-benchmark /usr/local/Cellar/redis/6.2.5/bin/redis-check-ao…...
安卓应用开发(一):工具与环境
开发工具 Android Studio,用于开发 Android 应用的官方集成开发环境 (IDE)。包括以下功能: 基于Gradle的构建系统 gradle是一个项目构建工具,将源工程打包构建为apk 安卓模拟器统一环境代码编辑模拟器实时更新Github集成Lint功能࿰…...
基于springboot+vue+Mysql的在线动漫信息平台
开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...
C++设计模式-结构型设计模式
写少量的代码来应对未来需求的变化。 单例模式 定义 保证一个类仅有一个实例,并提供一个该实例的全局访问点。——《设计模式》GoF 解决问题 稳定点: 类只有一个实例,提供全局的访问点(抽象) 变化点:…...
open-webui+ollama本地部署Llama3
前言 Meta Llama 3 是由 Meta 公司发布的下一代大型语言模型,拥有 80 亿和 700 亿参数两种版本,号称是最强大的开源语言模型。它在多个基准测试中超越了谷歌的 Gemma 7B 和 Mistral 7B Instruct 模型。 安装 1.gpt4all https://github.com/nomic-ai/…...
个人对行为型设计模式的理解 @by_TWJ
目录 1. 访问者模式2. 迭代器模式3. 观察者模式4. 模板模式5. 状态模式6. 备忘录模式7. 策略模式8. 解释器模式9. 责任链模式10. 命令模式11. 中介者模式 研究了一下,我为了方便理解,对它们进行了分类: 针对请求者与执行者关系方面 1对多 - 责…...
苹果挖走大量谷歌人才,建立神秘人工智能实验室;李飞飞创业成立「空间智能」公司丨 RTE 开发者日报 Vol.197
开发者朋友们大家好: 这里是 「RTE 开发者日报」 ,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE(Real Time Engagement) 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…...
行业唯一!易保全牵头编制的《区块链数据访问安全技术通则》发布
近日,易保全牵头参与编制的《区块链数据访问安全技术通则》经中国国际经济技术合作促进会正式发布,为中国区块链数据安全技术提供了标准参考。 易保全作为牵头起草单位、易保全CEO兼董事长刘刚担任主要起草人参与其中,在区块链技术安全风险…...
Rust Rocket创建第一个hello world的Web程序 Rust Rocket开发常用网址和Rust常用命令
一、Rust Rocket简介 Rust Rocket 是一个用 Rust 语言编写的 Web 应用框架,它结合了 Rust 的安全性和性能优势,以及 Web 开发的便利性。以下是 Rust Rocket 框架的一些优点: 安全性:Rust 是一种注重安全性的编程语言,…...
第G9周:ACGAN理论与实战
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 上一周已经给出代码,需要可以跳转上一周的任务 第G8周:ACGAN任…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
