当前位置: 首页 > news >正文

【初阶数据结构】单链表之环形链表

目录标题

  • 前言
  • 环形链表的约瑟夫问题
  • 环形链表
  • 环形链表||

请添加图片描述

前言

  前面我们已经学习了关于单链表的一些基本东西,今天我们来学习单链表的一个拓展——环形链表,我们将用力扣和牛客网上的三道题目来分析讲解环形链表问题。

环形链表的约瑟夫问题

  我们首先来看一道非常经典的题目——环形链表的约瑟夫问题。题目问题如下:

在这里插入图片描述
输入:5,2
输出:3
说明:
开始5个人 1,2,3,4,5 ,从1开始报数,1->1,2->2编号为2的人离开
1,3,4,5,从3开始报数,3->1,4->2编号为4的人离开
1,3,5,从5开始报数,5->1,1->2编号为1的人离开
3,5,从3开始报数,3->1,5->2编号为5的人离开
最后留下人的编号是3

  看着问题好像无从下手,但只要掌握了链表的相关知识,你也能拿捏环形链表题目。
  这道题目说将n个人围城一个圈,转换成链表也就是将n个节点串起来变成一个圈,即将最后一个节点的next指针指向头节点,这样环形链表就出现了。
  当有5个人,编号为2的离开,流程如下
在这里插入图片描述

在这里插入图片描述

  代码实现(解析包含在代码中)

/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** * @param n int整型 * @param m int整型 * @return int整型*///题目中没有给出链表,我们首先要自己创建一个链表typedef struct ListNode ListNode;//给节点重命名ListNode* buyNode(int x)//建立新节点{ListNode* node = (ListNode*)malloc(sizeof(ListNode));if(node == NULL){exit (1);}node->val = x;node->next = NULL;return node;}ListNode* createCircle(int n){ListNode* phead = buyNode(1);//首先创建头节点,使后面的节点都能相连ListNode* ptail = phead;for(int i = 2;i <= n;i++){ptail->next = buyNode(i);ptail = ptail->next;}ptail->next = phead;//尾节点的next指向头节点,使其成为环形链表return ptail;//返回尾节点}
int ysf(int n, int m ) {// write code hereListNode* prev = createCircle(n);ListNode* pcur = prev->next;//让尾节点的下一个节点也就是头节点赋给pcur,让其成为数数的起始点。int count = 1;//开始第一次数数记为1while(pcur->next != pcur)//结束的标志是pcur->next == pcur,此时就只剩pcur这一个节点,则跳出循环{if(count == m)//如果pcur所对应的这个节点的值恰好为m,则要删除这个节点,在单链表中我们也讲过删除节点要怎么删除,便不再多讲{prev->next = pcur->next;free(pcur);pcur = prev->next;count = 1;//pcur往下走了一个节点要记得把count置为1,继续下一次循环}else //不为m时,prev指针和pcur指针都往下走一个,且pcur对应的报数count要加加{prev = pcur;pcur = pcur->next;count ++;}}return pcur->val;
}

环形链表

  学会的环形链表的约瑟夫问题,下面来两道力扣中的环形链表问题
  题目链接如下:环形链表。题目如下:
在这里插入图片描述
在这里插入图片描述
  我们要判断一个链表看其是否有环,先说结论,我们可以利用快慢指针进行求解。顾名思义,快慢指针就是存在两个指针,一个走的快,一个走的慢,快指针一次走走两步或三步四步都可以,慢指针一般走一步。
  这道题中,我们让快指针一次性走两边,慢指针一次性走一步,当慢指针进入环以后,快指针开始追慢指针,如果快指针能追上慢指针,也就是两指针相遇,则证明该链表带环。 代码如下:

/**1. Definition for singly-linked list.2. struct ListNode {3.     int val;4.     struct ListNode *next;5. };*/
typedef struct ListNode ListNode; 
bool hasCycle(struct ListNode *head) {ListNode* slownode = head, *quicknode = head;//定义快慢指针while(quicknode && quicknode->next)//快指针以及快指针指向的下一个节点不为空,则一直循环{slownode = slownode->next;//慢指针一次走一步quicknode = quicknode->next->next;//快指针一次走两步if(quicknode == slownode)//快慢指针相遇,则链表带环{return true;}}return false;//为空跳出循环说明该链表不带环
}

下面将解决大家的疑惑点:

  1. 为什么快慢指针一定会相遇,而不是会错过,如何证明
  2. 当慢指针走一步,快指针走3步,4步……又一定能追上相遇吗,如何证明

  这两个问题我们来一一解决。
  首先是第一个问题:为什么快慢指针一定会相遇,而不是会错过,如何证明。我们可以将快慢指针走的过程图画出来
在这里插入图片描述
  所以当快指针一次走两步,慢指针一次走一步时,如果链表带环,二者一定会在环内相遇,这就证明解决了第一个问题:
  下面是第二个问题:当慢指针走一步,快指针走3步,4步……又一定能追上相遇吗,如何证明。
  当慢指针一次走一步,快指针一次走3步时,证明如下:

当slow进环时,fast和slow的距离为n
slow一次走一步,fast一次走三步
则它们每追击一次,距离缩小2,

n是偶数n是奇数
nn
n-2n-2
…………
43
21
0-1
追上了错过了,进行新一轮追击

如果n是奇数,fast错过了slow,此时fast到了slow前面一格,假设环的长度为C,则slow和fast是距离变为了C-1,开始新一轮追击,还是讨论C-1是偶数还是奇数的问题,如果C-1是偶数,就能追上,如果C-1是奇数,那永远不会追上。

根据以上分析我们可以得出结论:

  • 当n时偶数,第一轮就能追上
  • 当n时奇数时,第一轮追击会错过,二者的距离变成C-1(C是环的长度)
    • 如果C-1是偶数,即C是奇数,那么下一轮就能追上相遇
    • 如果C-1是奇数,即C是偶数,那么永远追不上

看似我们已经讨论出了有追上和追不上的这两种情况,但是追不上的情况:即n是奇数C是偶数的情况真的会存在吗,我们可以继续往下讨论:
在这里插入图片描述

当slow进环时,fast和slow的距离为n
slow一次走一步,fast一次走三步
我们就能发现fast走的距离是slow的三倍
根据这个关系可以列出等式
slow走的距离:L
fast走的距离:L+x * c+c-n(slow进环时,假设fast已经在环里面转了n圈)
则得到等式:3 * L = L+x * c+c-n
化简得到:2 * L = (x+1) * c-n
2*L必定是偶数,
根据上面得出的结论:当n是奇数,c是偶数时,永远追不上
将其带入右边的式子,得到:(x+1)*偶数 - 奇数,此时得到的式子只能是奇数,与左边不等,则发现永远追不上的条件不成立。

  根据以上一系列分析,可以得出结论:
  当slow一次走一步,fast一次走三步时,若n是偶数,则第一轮就能追上,若n是奇数,c是奇数时,第二轮追上,即无论如何,一定能相遇追上。当fast一次走4步或者5步时也是同样的证明方法。

环形链表||

  这道题的环形链表是上一道题的进阶,如果链表中有环,则要返回入环的第一个节点,没环则返回空,题目链接如下:环形链表||
在这里插入图片描述
  对于本题,我们用到的是和上一题差不多一样的思路,首先判断有没有环,就用快慢指针,发现有环,要找到入环的第一个节点,我们有两种办法解决:

  1. 将快慢指针相遇时的节点我们记为meet节点,然后让头节点和meet节点同时走,每次都走一步,当二者相遇时的节点就是进环时的第一个节点。
  2. 将快慢指针相遇时的节点我们记为meet节点,然后将meet节点与meet的下一个节点断开,使其形成两条链,此时就变成了求两条链表的相交问题(代码写起来较为复杂)

下面一一讲解:

对于方法一:
我们需要证明的是:为什么让头节点和meet节点一起每次走一步,当二者相遇的时候就是进环节点。
上一题我们通过画图找等式来解决为什么一定相遇,这题我们同样可以通过画图找等式解决。
在这里插入图片描述
我们用快慢指针,快指针一次走两步,慢指针一次走一步
则快指针走的路程是慢指针的两倍
由图,slow和fast相遇时距离进环时的一个节点为N:
slow走的距离:L+N (slow指针在环内走不到一整圈,因为当slow走一圈,fast在环内走两圈,肯定早就会相遇,所以slow指针在环内只能走N的距离
fast走的距离:L+x * C +N (slow进环前,fast指针已经走了x圈)
所以得到等式:2 * (L+N) = L + x * C + N
化简得到:L = (x - 1)*C + C - N
(x - 1)*C是圈数
C - N 是meet节点与进环节点的距离,二者相加刚好为L
这就是为什么头结点和meet节点每次同时走一步,二者相遇时就是进环节点

代码如下:

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/
typedef struct ListNode ListNode;
struct ListNode *detectCycle(struct ListNode *head) {ListNode* fast = head, *slow = head;//给定两个快慢指针while(fast && fast->next){fast = fast->next->next;slow = slow->next;if(fast == slow)//相遇则带环{ListNode* phead = head;ListNode* meet = slow;//相遇节点置为meetwhile(phead != meet){phead = phead->next;meet = meet->next;//头节点和meet节点每次走一步}return phead;//相遇,返回其节点}}return NULL;//不带环返回空}

对于方法二:
我们要知道如何把环形链表断开,使其成为两条链表,并找到两条链表的相交节点,即为进环节点。
在这里插入图片描述
将meet的下一个节点记为newhead,并将其断开,此时就有head和newhead两条链,求这两条链表的相交节点即可。

代码如下:

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/
typedef struct ListNode ListNode;
struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {//定义一个函数,寻找两条链表的相交节点ListNode* l1 = headA, *l2 = headB;int a_count = 1, b_count = 1;while(l1->next){l1 = l1->next;a_count++;//给A链表长度计数}while(l2->next){l2 = l2->next;b_count++;//给B链表长度计数}//此时l1和l2都到达了两条链表的尾节点if(l1 != l2)//如果二者不相等,说明两条链表不想交{return NULL;}//到这,说明两条链表尾节点相等,链表相交int gap = abs(a_count - b_count);//得到两链表节点个数的差值ListNode* fastnode = headA, *slownode = headB;//假定长链表为链表A,短链表为链表Bif(b_count > a_count)//如果B链表节点数多则交换{fastnode = headB;slownode = headA;}//就能保证fastnode一定是长的那个链表while(gap){fastnode = fastnode->next;//先让长的链表走它们的差值gap--;}while(fastnode != slownode){fastnode = fastnode->next;slownode = slownode->next;//两链表一起走,相等了则为相交节点}return fastnode;
}
struct ListNode *detectCycle(struct ListNode *head) {ListNode* fast = head, *slow = head;while(fast && fast->next){fast = fast->next->next;slow = slow->next;if(fast == slow){ListNode* phead = head;ListNode* meet = slow;//相遇节点置为meetListNode* newhead = meet->next;//meet节点的下一节点作为新链表的头结点newheadmeet->next = NULL;//将其断开return getIntersectionNode(phead,newhead);//返回两条链表的相交节点。}}return NULL;}

  方法二就到此结束,代码比较长是因为设计到了两条链表相加节点的问题,在力扣上也有此题目,大家也可以下去做做,链接如下:相交链表。
  本篇内容到此结束了,关于链表大家要自己多想多画图多练习。感谢大家观看,如果大家喜欢,希望大家一键三连支持一下,如有表述不正确,也欢迎大家批评指正。
请添加图片描述

相关文章:

【初阶数据结构】单链表之环形链表

目录标题 前言环形链表的约瑟夫问题环形链表环形链表|| 前言 前面我们已经学习了关于单链表的一些基本东西&#xff0c;今天我们来学习单链表的一个拓展——环形链表&#xff0c;我们将用力扣和牛客网上的三道题目来分析讲解环形链表问题。 环形链表的约瑟夫问题 我们首先来看…...

【积分,微分,导数,偏导数公式推导】

1. 积分 积分是微积分的一个分支&#xff0c;用于计算曲边梯形的面积或者变速直线运动的总距离等。积分分为不定积分和定积分。 不定积分&#xff1a;给出一个函数&#xff0c;求出其所有可能的原函数。定积分&#xff1a;计算一个函数在特定区间上的积分。 2. 微分 微分是…...

java:递归实现的案例

//求第20个月兔子的对数 //每个月兔子对数&#xff1a;1&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;8 public class Test {//求第20个月兔子的对数//每个月兔子对数&#xff1a;1&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;8pu…...

Arxml文件解析03- 自动驾驶Radar服务radar_svc.arxml

<AR-PACKAGES><AR-PACKAGE><SHORT-NAME>bosch</SHORT-NAME><AR-PACKAGES>...</AR-PACKAGES>...

Elasticsearch安装步骤

引言 Elasticsearch是一个基于Lucene构建的开源、分布式、RESTful搜索和分析引擎。它设计用于云计算中&#xff0c;能够达到实时搜索&#xff0c;稳定&#xff0c;可靠&#xff0c;快速&#xff0c;安装使用方便。Elasticsearch为所有类型的数据提供近乎实时的搜索和分析。无论…...

Windows系统和unbtun系统连接usb 3.0海康可见MVS和红外艾睿相机

一.海康可见USB3.0工业面阵相机 海康usb相机需要去海康官网上下载对应系统的MVS客户端及SDK开发包 海康机器人-机器视觉-下载中心 选择Windows系统和unbtun&#xff08;我是linux aarch64,所以选择了对应压缩包解压&#xff09; Windows系统 1.双击安装包进入安装界面&…...

深入Django:用户认证与权限控制实战指南

title: 深入Django&#xff1a;用户认证与权限控制实战指南 date: 2024/5/7 18:50:33 updated: 2024/5/7 18:50:33 categories: 后端开发 tags: AuthDecoratorsPermissionsGuardianRESTAuthSessionMgmtMFA 第1章&#xff1a;入门Django与设置 1.1 Django安装与环境配置 在…...

Kubernetes - Dashboard 配置用户名密码方式登录

Kubernetes - Dashboard 配置用户名密码方式登录 前言&#xff1a; 为了 K8s 集群安全&#xff0c;默认情况下 Dashboard 以 Token的形式登录的&#xff0c;那如果我们想以用户名/密码的方式登录该怎么操作呢&#xff1f;其实只需要我们创建用户并进行 ClusterRoleBinding绑定即…...

AIGC能给人类社会带来哪些变革?

随着人工智能技术的飞速发展&#xff0c;AIGC&#xff08;人工智能生成内容&#xff09;正在成为推动社会变革的重要力量。本文将从技术角度出发&#xff0c;探讨AIGC技术如何影响和改变人类生活的各个方面。 一、AIGC技术概述 AIGC&#xff0c;即人工智能生成内容&#xff0…...

医药垃圾分类管理系统|基于SSM医药垃圾分类管理系统的系统设计与实现(源码+数据库+文档)

医药垃圾分类管理系统 目录 基于SSM医药垃圾分类管理系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1系统登录模块 2管理员模块实现 3用户模块实现 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博…...

用vim或gvim编辑程序

vim其实不难使用&#xff0c;学习一下就好了。简单功能很快学会。它有三种模式&#xff1a;命令模式&#xff0c;编辑模式&#xff0c;视模式。打开时在命令模式。在命令模式下按 i 进入编辑模式&#xff0c;在编辑模式下按<Esc>键退出编辑模式。在命令模式按 :wq 保存文…...

linus下Anaconda创建虚拟环境pytorch

一、虚拟环境 1.创建 输入下面命令 conda create -n env_name python3.8 输入y 2.激活环境 输入 conda activate env_name 二、一些常用的命令 在Linux的控制平台 切换到当前的文件夹 cd /根目录/次目录 查看conda目录 conda list 查看pip目录 pip list查看历史命…...

synchronized与volatile关键字

1.synchronized的特性 1.1互斥 synchronized 会起到互斥效果, 某个线程执行到某个对象的 synchronized 中时, 其他线程如果也执行到 同一个对象 synchronized 就会阻塞等待. 进入 synchronized 修饰的代码块, 相当于 加锁 退出 synchronized 修饰的代码块, 相当于 解锁 syn…...

Python基础之运算符操作

在Python中&#xff0c;运算符的作用就是用于执行各种的运算操作&#xff0c;常见的运算符有算数运算符、比较运算符、逻辑运算符、赋值运算符、成员运算符、身份运算符等。下面我们就来看看在Python中这些运算的详细操作。 算术运算符 算术运算符是用来执行一些基本的数学运…...

【busybox记录】【shell指令】uniq

目录 内容来源&#xff1a; 【GUN】【uniq】指令介绍 【busybox】【uniq】指令介绍 【linux】【uniq】指令介绍 使用示例&#xff1a; 去除重复行 - 默认输出 去除重复行 - 跳过第n段&#xff08;空格隔开&#xff09;&#xff0c;比较n1以后的内容&#xff0c;去重 去…...

Nginx从入门到精通速成

文章目录 一. **Nginx** **的简介**1.1 什么是 **nginx**1.2 正向代理1.3 反向代理1.4 **负载均衡**1.5 动静分离 二. **Nginx** **的安装**三. **Nginx** **的常用的命令**四. **Nginx** **的配置文件**五. **Nginx** **配置实例**反向代理实例**1**5.1 实现效果5.2 准备工作5…...

Flutter笔记:Widgets Easier组件库(4)使用按钮组

Flutter笔记 Widgets Easier组件库&#xff08;4&#xff09;&#xff1a;使用按钮组 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress…...

Docker常用命令 镜像库设置

Docker常用命令 & 镜像库设置 1. 镜像操作2. 容器操作3. 网络操作4. Docker Compose操作5. Docker volume操作6. Docker run介绍7. 镜像库设置 1. 镜像操作 列出本地所有的镜像 docker images从远程仓库拉取镜像到本地 docker pull <image_name>删除本地的指定镜像…...

无人零售,重塑购物新纪元

在这个快节奏的时代&#xff0c;科技的每一次跃进都在悄无声息地改变着我们的生活方式。而今&#xff0c;无人零售正以雷霆之势&#xff0c;颠覆传统购物模式&#xff0c;为我们带来前所未有的便捷与智能体验。想知道无人零售如何彻底改变我们的购物方式吗&#xff1f;跟随我&a…...

【图片格式转换】ICO、JPG、JPEG、PNG图片格式在线免费转换

ICO、JPG、JPEG、PNG图片格式转换 图片格式转换 https://orcc.online 支持ICO、JPG、JPEG、PNG等 主页 https://www.orcc.online 其他工具 pdf在线免费转word文档 https://orcc.online/pdf 时间戳转换 https://orcc.online/timestamp Base64 编码解码 https://orcc.onlin…...

通过自然语言处理执行特定任务的AI Agents;大模型控制NPC执行一系列的动作;个人化的电子邮件助手Panza

✨ 1: OpenAgents 通过自然语言处理执行特定任务的AI代理 OpenAgents是一个开放平台&#xff0c;旨在使语言代理&#xff08;即通过自然语言处理执行特定任务的AI代理&#xff09;的使用和托管变得更加便捷和实用。它特别适合于日常生活中对数据分析、工具插件获取和网络浏览…...

4.2 JavaScript语法

4.2.1 JavaScript大小写 在JavaScript中大小写是严格区分的&#xff0c;无论是变量、函数名称、运算符和其他语法都必须严格按照要求的大小写进行声明和使用。例如变量hello与变量HELLO会被认为是完全不同的内容。 4.2.2 JavaScript分号 很多编程语言&#xff08;例如C、Java和…...

面试二十五、remove和earse的区别

vector中erase的作用是删除掉某个位置position或一段区域&#xff08;begin, end)中的元素&#xff0c;减少其size&#xff0c;返回被删除元素下一个元素的位置。 vector中remove的作用是将范围内为val的值都remove到后面&#xff0c;返回新的_last值&#xff08;非val部分的en…...

普乐蛙元宇宙VR体验馆设备集体亮相VR文旅景区展

普乐蛙全国巡展又双叒叕开始了! 这次来到的是“好客山东”↓↓ 山东2024休闲旅游产业展 4月25日至27日&#xff0c;2024休闲旅游产业展在临沂国际博览中心举办。本次展会以“潮购文旅好品&#xff0c;乐享时尚生活”为主题&#xff0c;汇聚全国文旅产业上下游500多家企业、上万…...

北京大学-知存科技存算一体联合实验室揭牌,开启知存科技产学研融合战略新升级

5月5日&#xff0c;“北京大学-知存科技存算一体技术联合实验室”在北京大学微纳电子大厦正式揭牌&#xff0c;北京大学集成电路学院院长蔡一茂、北京大学集成电路学院副院长鲁文高及学院相关负责人、知存科技创始人兼CEO王绍迪、知存科技首席科学家郭昕婕博士及企业研发相关负…...

项目总结(一)docker总结

目录 一、引言 二、docker ------>2.1、docker介绍 ------>2.2、与虚拟机的区别 ------>2.3、Docke基本概念 ------>2.4、Docker内部结构 ------>2.5、Windows上使用docker ------>2.6、Linux上使用Docker ------>2.7、Docker常用命令 ------&g…...

深圳比创达EMC|EMC一站式解决方案:助力电子产品电磁兼容性升级

在当今电子信息技术飞速发展的时代&#xff0c;电磁兼容性&#xff08;EMC&#xff09;问题日益凸显&#xff0c;成为制约电子产品性能和质量的关键因素。为了满足市场对EMC问题的迫切需求&#xff0c;EMC一站式解决方案应运而生&#xff0c;成为解决EMC问题的有效途径。 一、…...

万兆以太网MAC设计(11)完整UDP协议栈仿真

文章目录 前言一、模块接口二、IP模块与ARP模块之间的联系三、整体协议栈仿真总结&#xff1a; 前言 目前除了巨帧处理逻辑之外&#xff0c;所有的准备工作都已经结束了&#xff0c;先进行整体的功能验证。 一、模块接口 所有模块接口皆采用AXIS数据流的形式&#xff0c;其中…...

【牛客】【模板】差分

原题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 差分模板。 b[0]a[0]; b[1]a[1]-a[0]; b[2]a[2]-a[1]; ...... b[n-1]a[n-1]-a[n-2]; b[n]a[n]-a[n-1]; 差分标记&#xff1a;b[l]k,b…...

鸿蒙内核源码分析(中断管理篇) | 江湖从此不再怕中断

关于中断部分系列篇将用三篇详细说明整个过程. 中断概念篇 中断概念很多&#xff0c;比如中断控制器&#xff0c;中断源&#xff0c;中断向量&#xff0c;中断共享&#xff0c;中断处理程序等等.本篇做一次整理.先了解透概念才好理解中断过程.用海公公打比方说明白中断各个概念…...

php使用rabbitmq

这里使用的是 php-amqplib composer require php-amqplib/php-amqplib生产端send.php <?phprequire_once "./vendor/autoload.php";use PhpAmqpLib\Connection\AMQPStreamConnection; use PhpAmqpLib\Message\AMQPMessage;//交换机名称 $exc_name exchange.can…...

前端发起网络请求的几种常见方式(XMLHttpRequest、FetchApi、jQueryAjax、Axios)

摘要 前端发起网络请求的几种常见方式包括&#xff1a; XMLHttpRequest (XHR)&#xff1a; 这是最传统和最常见的方式之一。它允许客户端与服务器进行异步通信。XHR API 提供了一个在后台发送 HTTP 请求和接收响应的机制&#xff0c;使得页面能够在不刷新的情况下更新部分内容…...

通过氧气退火增强β-Ga₂O₃二极管.中国科技大学和河北半导体研究所的研究人员在这一特定领域取得了最新重大进展

上图所示&#xff1a;&#xff08;a&#xff09;增加台面有助于提高β-Ga2O3肖特基势垒二极管的阻断电压&#xff08;b&#xff09;。 氧气退火和自对准台面终端使β-Ga2O3二极管进一步走向商业化。 虽然β-Ga2O3电力电子技术已经取得了长足的进步&#xff0c;但仍然存在挑战&…...

C语言猜数字游戏

用C语言实现猜数字游戏&#xff0c;电脑随机给出一个范围内的数字&#xff0c;用户在终端输入数字&#xff0c;去猜大小&#xff1b;对比数字&#xff0c;电脑给出提示偏大还是偏小&#xff1b;不断循环&#xff0c;直到正确 #include <stdio.h> #include <time.h>…...

笔记本连接不上远程桌面,笔记本无法连接远程桌面的可能原因及解决方法

在使用远程桌面功能时&#xff0c;笔记本无法成功连接的情况可能由多种原因引起。为了有效地解决这个问题&#xff0c;我们需要逐一排查这些可能的原因&#xff0c;并采取相应的解决措施。 首先&#xff0c;网络连接稳定性是远程桌面连接成功的关键。请确保笔记本和远程计算机之…...

Android 音视频播放器 Demo(一)—— 视频解码与渲染

本篇作为 Android 音视频实战系列的第二篇文章&#xff0c;主要介绍视频解码与渲染过程。本系列文章目录如下&#xff1a; Android 音视频基础知识 Android 音视频播放器 Demo&#xff08;一&#xff09;—— 视频解码与渲染 Android 音视频播放器 Demo&#xff08;二&#xff…...

Flutter笔记:Widgets Easier组件库(3)使用按钮组件

Flutter笔记 Widgets Easier组件库&#xff08;3&#xff09;&#xff1a;使用按钮组件 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddre…...

荷香堪筑梦,鸳鸯和月寻。(变相BFS搜索)

本题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 题目&#xff1a; 样例&#xff1a; 输入 3 4 2 .... ***. ..a. 输出 yes 思路&#xff1a; 根据题意&#xff0c;这里 1 s 可以移动多次&#xff0c;我们将每次可以移动避开雪的的位置存储起来&#xff0c;判断当…...

智慧公厕建设,打造智慧城市基础设施新亮点

公共厕所是城市基础设施的重要组成部分&#xff0c;而智慧公厕的建设则是现代城市管理的创新之举。为了实现公厕的精细化管理和提供更便捷的服务&#xff0c;推进智慧公厕建设必须要实现技术融合、业务融合、数据融合的目标&#xff0c;跨越层级、地域、系统、部门和业务的限制…...

Kubernetes 教程:在 Containerd 容器中使用 GPU

原文链接:Kubernetes 教程:在 Containerd 容器中使用 GPU 云原生实验室本文介绍了如何在使用 Containerd 作为运行时的 Kubernetes 集群中使用 GPU 资源。https://fuckcloudnative.io/posts/add-nvidia-gpu-support-to-k8s-with-containerd/ 前两天闹得沸沸扬扬的事件不知道…...

LNMP部署wordpress

1.环境准备 总体架构介绍 序号类型名称外网地址内网地址软件02负载均衡服务器lb0110.0.0.5192.168.88.5nginx keepalived03负载均衡服务器lb0210.0.0.6192.168.88.6nginx keepalived04web服务器web0110.0.0.7192.168.88.7nginx05web服务器web0210.0.0.8192.168.88.8nginx06we…...

本地部署大模型ollama+docker+open WebUI/Lobe Chat

文章目录 大模型工具Ollama下载安装运行Spring Ai 代码测试加依赖配置写代码 ollama的web&Desktop搭建部署Open WebUI有两种方式Docker DesktopDocker部署Open WebUIDocker部署Lobe Chat可以配置OpenAI的key也可以配置ollama 大模型的选择 本篇基于windows环境下配置 大模型…...

qt学习篇---界面按键关联(信号和槽)

目录 1.qt基础 2.做一个界面 创建project UI界面设计 信号和槽 1.控件改名字 2.什么是信号和槽 3.怎么关联信号和槽 自动关联 手动关联 1.qt基础 qt可移植性强&#xff0c;不久会用到MCU。很有意义学习 2.做一个界面 创建project 不要中文路径 选择QWidget .pro文件…...

python Django 的内置权限系统或自定义模型来存储更复杂的角色和权限关系

在 Django 中,管理用户权限和角色通常涉及到使用 Django 的内置权限系统或自定义模型来存储更复杂的角色和权限关系。下面是一个基本的指南,说明如何在 Django 中为后台管理系统分配权限并将其保存在数据库中,同时结合 Vue.js 和 Element UI 作为前端框架。 后端(Django)…...

不上班,我靠这5份赚钱副业养活了自己

在这个快节奏的社会里&#xff0c;很多人都在为生活奔波忙碌。今天&#xff0c;就让我来跟大家分享一下我的“躺平”秘籍吧&#xff01; 这一个月来&#xff0c;我没有上班&#xff0c;但好在有副业养活自己。有时候&#xff0c;我真的觉得有一份自己喜欢的自媒体副业挺好的。…...

强一致性的皇冠:分布式事务模型的至高法则揭秘

关注微信公众号 “程序员小胖” 每日技术干货&#xff0c;第一时间送达&#xff01; 引言 分布式事务模型是分布式系统设计的核心&#xff0c;关键在于保证数据一致性和事务完整性&#xff0c;尤其强调强一致性。诸如2PC、3PC、Saga、TCC等模型与协议&#xff0c;应运而生以解…...

mac/windows下安装docker,minikube

1、安装docker Get Started | Docker 下载安装docker 就行 启动后&#xff0c;就可以正常操作docker了 使用docker -v 验证是否成功就行 2、安装minikube&#xff0c;是基于docker-desktop的 2.1、点击设置 2.2、选中安装&#xff0c;这个可能需要一点时间 这样安装后&…...

【爬虫】fake_useragent的使用、BeautifulSoup(find()和find_all())

1 fake_useragent 2 BeautifulSoup 3 Beautiful Soup库的find()和find_all() 1 fake_useragent fake_useragent是一个Python库&#xff0c;用于生成随机的用户代理字符串。 用户代理是在HTTP请求中发送给服务器的一种标识&#xff0c;它告诉服务器发送请求的客户端的类型、版本…...

ComfyUI中图像亮度/对比度/饱和度处理

用上面这个节点可以同时设置图片的亮度、对比度和饱和度。 【保姆级教程】一口气分享在ComfyUI中常用的30多种基本图像处理方式 更多好玩且实用AIGC工作流和节点 星球号&#xff1a;32767063 本期资料链接 往期学习资料 整理AI学习资料库...

基于FPGA的DDS波形发生器VHDL代码Quartus仿真

名称&#xff1a;基于FPGA的DDS波形发生器VHDL代码Quartus仿真&#xff08;文末获取&#xff09; 软件&#xff1a;Quartus 语言&#xff1a;VHDL 代码功能&#xff1a; DDS波形发生器VHDL 1、可以输出正弦波、方波、三角波 2、可以控制输出波形的频率 DDS波形发生器原理…...