scikit-learn实现单因子线性回归模型
1.是什么:
针对机器学习提供了数据预处理,分类,回归等常见算法的框架

2.基于scikit-learn求解线性回归的问题:
2.1.求解a,b对新数据进行预测:

2.2评估模型表现(y和y’的方差MSE):


2.3 图形展示:
**scatter(x,y):**画散点图
**绘画子图:**利用matplotlib绘画子图subplot(211)——>代表两行一列第一张图绘制

3.单因子线性回归模型:
- 这些是导入所需的Python库和模块。NumPy用于数值计算,Pandas用于数据处理,Matplotlib用于绘图,而Scikit-learn中的LinearRegression类和评估指标用于线性回归建模和评估。








10.
问:为什么scikit-learn期待输入的是二维数组?
- 一致性: Scikit-learn的设计遵循一致性原则,即无论输入是一维数组还是二维数组,模型的处理方式应该是一致的。因此,为了保持一致性,大多数模型都要求输入是二维数组。
- 多特征支持: 在实际问题中,往往会有多个特征(或自变量)影响目标变量(或因变量)。而使用二维数组可以很容易地表示多个特征,每一列代表一个特征,每一行代表一个样本。
- 适应性: 使用二维数组可以更好地适应各种数据集的情况,不论是单特征还是多特征的情况。
完整代码:
# 导入工具包
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 1.读取generated_data.csv文件数据
path = 'D:/pythonDATA/generated_data.csv'
data = pd.read_csv(path)
type(data)
# 2.查看读取到的文件
print(data.head())
# 3.分别将数据赋值给x和y
X = data['x']
y = data['y']
print(type(X))
# 4.利用matplotlip将数据可视化,进行分散图显示
plt.figure(figsize=(10, 8))
plt.scatter(X, y)
plt.show()
# 5.创造线性回归模型
lr_model = LinearRegression()
# 输出X的纬度
print(X.shape)
# 6.先将X利用numpy转为数组,然后再reshape成二维数组
X = np.array(X)
print(X)
X = X.reshape(-1, 1)
print(X)
print(X.shape) # (10,1)
# 7.拟合训练
lr_model.fit(X, y)
# 8.查看线性回归模型拟合后的系数a,b
a = lr_model.coef_
b = lr_model.intercept_
print(a)
print(b)
# 9.对X=3.5时进行模型预测y值
c_predict = lr_model.predict([[3.5]])
print(c_predict)
y_predict = lr_model.predict(X)
print(y_predict)
# 10.进行模型评估
MSE = mean_squared_error(y, y_predict)
R2 = r2_score(y, y_predict)
print(MSE) # MSE接近0
print(R2) # R2值接近1,拟合度很高
# 11.可视化y和y'
fig2 = plt.figure(figsize=(10, 10))
plt.scatter(y, y_predict)
plt.show()相关文章:
scikit-learn实现单因子线性回归模型
1.是什么: 针对机器学习提供了数据预处理,分类,回归等常见算法的框架 2.基于scikit-learn求解线性回归的问题: 2.1.求解a,b对新数据进行预测: 2.2评估模型表现(y和y’的方差MSE)…...
【笔记】Anaconda命令提示符(Anaconda Prompt)操作
通过anaconda配置python环境有时需要conda安装一些包或者文件,这里作为一个笔记记录如何打开Anaconda命令提示符(Anaconda Prompt),并用conda操作 1.打开Anaconda命令提示符(Anaconda Prompt) 可直接在搜…...
Unity射击游戏开发教程:(12)使用后处理
后处理 后期处理是向您的游戏场景添加一个或多个滤镜,确实可以为您的游戏提供精美的外观。在本文中,我们将讨论如何在 Unity 中设置后处理系统,从那里您可以探索和试验 Unity 提供的所有过滤器。 首先,我们需要从包管理器添加后处理器堆栈。包管理器是 Unity 产品的集合,…...
python:机器学习特征优选
作者:CSDN _养乐多_ 在Python中进行机器学习特征选择的方法有很多种。以下是一些常用的方法: 过滤法(Filter Methods):通过统计方法或者相关性分析来评估每个特征的重要性,然后选择最相关的特征。常用的…...
花一个月时间为 vue3 重制了 vue-styled-components
花一个月时间为 vue3 重制了 vue-styled-components 前言 styled-components 在 React 是一个超级热门的 css in js 工具库。其实 styled-components 也有 Vue 版本(vue-styled-components),可惜的是只支持 Vue2,并且该项目已有…...
API接口调用|京东API接口|淘宝API接口
什么是电商API接口: 电商API接口是电商服务平台对外提供的一种接口服务,允许第三方开发者通过编程方式与电商系统进行数据交互和功能调用。 这些接口提供了一种标准化的方法来获取、更新或处理电商平台上的商品信息、订单状态、用户数据、支付信息、物流…...
pgsql和mysql比较
pgsql相对于mysql的优势主要体现在以下几个方面: 稳定性和可靠性:PostgreSQL的稳定性极强,即使在崩溃、断电等灾难场景下也能表现出很好的抗打击能力。相比之下,很多MySQL用户都遇到过Server级的数据库丢失的情况。此外ÿ…...
【太赫兹偏振保持亚波长波导链路功率预算分析】
在进行太赫兹(Terahertz,THz)偏振保持亚波长波导链路的功率预算分析时,我们需要考虑多个因素,包括波导的传输损耗、耦合损耗、偏振保持性能、以及可能存在的其他系统损耗。以下是一个基本的分析框架: 传输…...
json-server的安装和使用
json-server介绍 json-server是可以把本地当做服务器,然后axios向本地区发送请求,并且不会出现跨域的问题,若是等不及后端数据,可以用这个模拟假数据 json-server安装及使用 【json-server网址】https://www.npmjs.com/package/…...
Unity射击游戏开发教程:(10)创建主界面
主界面开发 玩游戏时,主菜单是事后才想到要做的。实际上几乎每个游戏都有一个主界面。如果你点击打开游戏并立即开始游戏,你会感到非常惊讶。本文将讨论如何创建带有启动新游戏的交互式按钮的主界面/主菜单。 主菜单将是一个全新的场景。我们将添加一个 UI 图像元素,并在图像…...
Microsoft 365 for Mac v16.84 office365全套办公软件
Microsoft 365 for Mac是一款功能丰富的办公软件套件,为Mac用户提供了丰富的功能和工具,提高了工作效率和协作能力。Microsoft 365 for Mac是一款专为Mac用户设计的订阅式办公软件套件,旨在提高生产力和效率。 Microsoft 365 for Mac v16.84正…...
交易复盘-20240507
仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整,采用龙空龙模式 一支股票 10%的时候可以操作, 90%的时间适合空仓等待 蔚蓝生物 (5)|[9:25]|[36187万]|4.86 百合花…...
面试题: malloc与new的区别
malloc, free是C语言中的库函数, new, delete是C中的运算符new自动计算分配内存的大小,malloc需要手动计算分配内存的大小new返回对象类型的指针,malloc返回的是void*类型,需要显式类型转换new分配失败抛出异常,malloc…...
欧鹏RHCE 第五次作业
unit5.DNS域名解析服务的部署及优化方案 1. (问答题) 1.配置2台服务器要求如下: a)服务器1: 主机名:dns-master.timinglee.org ip地址: 172.25.254.100 配置好软件仓库 b)服务器2: 主机名&…...
数仓分层——ODS、DW、ADS
一、什么是数仓分层 数据仓库分层是一种组织和管理数据仓库的结构化方法,它将数据仓库划分为不同的层次或级别,每个层次具有特定的功能和目的。这种分层方法有助于管理数据仓库中的数据流程、数据处理和数据访问,并提供一种清晰的结构来支持…...
计算机视觉——OpenCV Otsu阈值法原理及实现
算法简介 Otsu阈值法,也被称为大津算法,是一种在图像处理中广泛使用的自动阈值分割技术。这种方法由日本学者大津展之于1979年提出,旨在根据图像的灰度直方图来自动选择最佳全局阈值。Otsu阈值法的核心思想是最小化类内方差或最大化类间方差…...
个人IP打造孵化运营产业链商业计划书
【干货资料持续更新,以防走丢】 个人IP打造孵化运营产业链商业计划书 部分资料预览 资料部分是网络整理,仅供学习参考。 PPT共90页(完整资料包含以下内容) 目录 个人IP运营方案: 1. 个人IP定位与构建 1.1 人格画像构…...
R语言:卡方检验
χ2检验(Chi-Square Test)是一种用于检验分类变量之间是否存在相关性的统计方法。χ2检验的原理基于观察到的频数与期望频数之间的偏差来判断分类变量之间是否存在显著的关联。 χ2检验的原理可以概括为以下几个步骤: 建立假…...
基于51单片机的电子钟秒表LCD1602仿真设计( proteus仿真+程序+设计报告+原理图+讲解视频)
基于51单片机的电子钟秒表LCD1602仿真设计( proteus仿真程序设计报告原理图讲解视频) 这里写目录标题 1. 主要功能:2. 讲解视频:3. 仿真4. 程序代码5. 设计报告6. 原理图7. 设计资料内容清单&&下载链接 仿真图proteus7.8及以上 程序…...
latex参考文献引用网址,不显示网址问题
以引用UCI数据集为例 1、加入宏包 \usepackage{url} 2、在参考文献bib文件中加入网址文献 misc{UCI, author {{D. Dua, E. Karra Taniskidou}}, year {2024}, title {UCI Machine Learning Repository}, howpublished {\url{http://archive.ics.uci.edu/ml}} } 完成&#x…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
