5分钟速通大语言模型(LLM)的发展与基础知识
- ✍️ 作者:哈哥撩编程(视频号同名)
- 博客专家·全国博客之星第四名
- 超级个体·COC上海社区主理人
- 特约讲师·谷歌亚马逊演讲嘉宾
- 科技博主·极星会首批签约作者
- 🏆 推荐专栏:
- 🏅 程序员:职场关键角色通识宝典
- 🏅 程序员:职场效能必修宝典
- 🏅 程序员:文心一言指令词宝典
- 🏅 Python全栈白宝书
- 🏅 ChatGPT实践指南白宝书
- 🏅 产品思维训练白宝书
- 🏅 全域运营实战白宝书
- 🏅 大前端全栈架构白宝书
文章目录
- ⭐ 大语言模型的发展一览
- ✨ AI 1.0 VS AI 2.0
- ✨ 大模型发展 · 词向量
- ✨ 大模型发展 · 词嵌入
- ✨ 大模型发展 · 句向量与全文向量
- ✨ 大模型发展 · 理解上下文
- ✨ 大模型发展 · ChatGPT的出现
这一章节呢,我们主要学习的是AI大模型相关的一些背景和基础知识。大家可以看到这一章节的标题是 “5分钟速通大语言模型(LLM)的发展与基础知识” ,标题名字倒是挺唬人的,相较于唬人的标题,大家肯定更关心的是接下来一段时间主要讲哪些内容呢?
首先,要请大家理解的是,由于内容篇幅大、涉及的知识面和方向也挺多的,所以接下来会进行章节内容的拆解。第一个就是带领大家了解一下大语言模型的快速发展,接着会为大家介绍一下国内主要的 LLM 的特点,以及AIGC整个产业的拆解,包括一下专业的常见名词,最后会和大家讲一下应用开发者在目前这样一个大背景下的机会,最后就是实战部分 Agent智能体 的项目,针对这个项目做需求分析和技术选型相关的工作,这是这一大章节的主要内容,先来看一下 大语言模型的发展一览 吧。
⭐ 大语言模型的发展一览
我们都知道,大语言模型(Large Language Model),简称是是 LLM 。为什么说是 AI 2.0时代 呢?这是因为在 LLM 出现之前,我们将之前的时间归结为 AI 1.0时代 。这个时候主要是各类的 NLP工程 都是一个特点,也就是通用性比较差。整个AI领域终极的形态,也是很多AI领域创业者都希望能够达到的一个形态,就是AGI,即所谓的通用智能。
✨ AI 1.0 VS AI 2.0
AI 1.0时代的特点就是单任务的智能AI,比如说27年前的IBM公司研制的人工智能系统 - 深蓝,它的特点就是只会下国际象棋,通过深度学习了很多国际象棋的套路后,战胜了国际象棋大师 加里·卡斯帕罗夫。这样的人工智能,你如果向它提问超过国家象棋之外的内容,它绝对是不知道的,这就是单任务智能AI的典型特点。
大语言模型的特点是什么?最显著的特点之一就是可以通过语言与我们进行交互,甚至可以通过自然语言的方式拓展到更多的场景,极大的可能会通过这种方式在未来发展出像AGI这样的通用型智能,也就是向我们一样的拥有智慧的智能体。
AI 1.0 这里就不做过多的介绍了,都是一些 NLP 相关的东西,直接从 AI 2.0 开始介绍 大语言模型的发展就好。
✨ 大模型发展 · 词向量
大语言模型从技术层面来分析的话,基本上也是一个从点到面的过程。最早出现的是名为 “词向量” 的技术,就是将自然语言的词语通过 向量 来表示,“向量” 是一个数学概念,就相当于是每一个词在 向量空间 里有一个唯一的坐标一样。就如同下图中的 “apple” 这个词在向量空间中表现出来的就是 [1 0 0 0 0] 这样的一个坐标,而 “elephant” 这个词的向量空间坐标就与 “apple” 有所区别,它的位置是 [0 0 0 0 1] 。这样的好处就在于,可以将我们现实生活中的自然语言通过数学语言的方式描述出来,通过精准的坐标可以找到位置。但是需要注意的是,词向量无法表达词语与词语之间的关联关系,另一个就是效率上也存在着一定的问题。
✨ 大模型发展 · 词嵌入
在 “词向量” 的基础之上,又出现了 “词嵌入技术” ,也就是 “embedding” ,在后续的实践项目中也会有使用到。词嵌入技术本质上其实还是词向量,其实就是对语言模型进行预训练,通过对现有的大量文章进行训练,让原本的词向量具备语言信息。
通过一些语言的训练方式,经过预训练之后的词向量,在向量空间上优惠诞生额外的信息,就会有效的提升模型的效果,而且可以在后续的其他任务空间做迁移,这就是大语言模型的预训练的初始原型。
在下图中,我们可以看到 embedding 中的 “dog” 和 “cat” ,通过坐标的方式做了标注,可以具备 低维向量 的表示,还可以具备语义相似、空间向量相近的特性。也就是说 “dog” 和 “cat” 通过大量的文章资料训练后,发现它们都可以归类到 “宠物”,那么这两个坐标点在向量空间中的坐标就是非常接近的,两者同属于宠物的 “向量域” ,而 “tree” 和 “flower” 就同属于是植物的 “向量域” 。
所以,我们就可以看到 “词向量” 实际上就是在 “低维向量” 中表示语义相似的向量空间、相近的一个特性。除此之外,词向量还可以进行迁移学习,将任务迁移到其他任务当中去。前文中介绍到的 IBM公司研制的人工智能系统 - 深蓝 ,就是一个活生生的例子,利用词向量的技术将学习国际象棋的技能进行迁移。
✨ 大模型发展 · 句向量与全文向量
在 “词嵌入” 之后呢,就出现了 “句向量” 和 “全文向量” ,就是根据前文信息去分析下文,或者是根据本文翻译成另一种语言,也就是说可以有效的处理时序性的序列数据。
所以,我们就可以看到如下图中的例子,可以将 “what time is it ?” 这样的一个句子通过一层一层的神经网络按照 “waht”、“time”、“is”、“it” 、“?” 这样的顺序做上下文的理解。
除此之外,“句向量” 还可以做到 短时记忆 和 选择性 的遗忘,主要应用在 文本生成、语音识别 和 图像描述 等场景,这个时候其实已经可以做到常见的AI识别了。
✨ 大模型发展 · 理解上下文
再往后发展,也就到了 理解全文上下文 的阶段了,理解上下文这种模式的代表作就是 BERT大模型 。这个阶段其实已经可以完成类似完形填空这样的任务了,就是根据上下文的理解完成代词。比如说代表男性的 “他” ,代表女性的 “她” ,代表第三方非人的 “它” ,这个时候也就说所谓的 “真·预训练” 模型时代开启了。
这个时候的显著特点之一就是支持 “并行训练” ,和早期的 RNN、CNN 模型的只能通过一层一层的方式进行训练相比,也就是 RNN、CNN 在处理 “waht time is it ?” 这样的训练的时候,是一层一层处理完前一个任务之后,才会处理后一个任务。所以这种依托 “并行训练” 实现的大模型就替代了 RNN、CNN 这样的神经网络,功能上更加的强大,可以实现类似语义识别的能力了。
✨ 大模型发展 · ChatGPT的出现
2023年,OPenAI 的 ChatGPT 的出现,AI领域正式进入到超大模型和大模型统一的时代。这里的起始点,其实是从谷歌的 T5 模型开始的,ChatGPT中的 “T” 代表的就是谷歌的Transformer(转换器)。
ChatGPT 引入的是 Prompt 这样的范式进行模型的训练,也就是说将 提示词(Prompt) 告诉模型,将答案训练出来,不停的通过这样的模式来持续的训练模型。当我们通过 “提示词”、“Prompt” 的方式对 ChatGPT进行引导,从而得出对应的答案。
到了这个时候,以 ChatGPT 和 GPT4 为代表的大模型,效果非常的惊艳,最新的成果就是目前的大模型都开始支持了 多模态 。也就是说开启 文生图、生成文字、生成图片、甚至生成视频 的时代,通过基于 Prompt 为范式训练大模型的方式,将这个标准给公布了出来。
前文介绍的,整个的大模型的发展是一个由点到面过程。其实就是一开始的 词向量 的技术,发展到了 神经网络 ,再到单线、并行训练,最后一直到现在这样的大规模、超大规模的训练集,最终呈现出来的就是现在大家所熟知、能够看到的一个大模型发展的一个结果。
相关文章:
5分钟速通大语言模型(LLM)的发展与基础知识
✍️ 作者:哈哥撩编程(视频号同名) 博客专家全国博客之星第四名超级个体COC上海社区主理人特约讲师谷歌亚马逊演讲嘉宾科技博主极星会首批签约作者 🏆 推荐专栏: 🏅 程序员:职场关键角色通识宝…...
vue项目开发流程
vue项目开发流程 环境配置 asdf plugin add nodejs asdf install nodejs 16.20.2创建项目 npm create vitelatest my-vue-app -- --template vue npm install npm run dev修改调试端口 修改vite.config.js,修改如下所示,添加server的host和port。 import { de…...
【Django学习笔记(十)】Django的创建与运行
Django的创建与运行 前言正文1、安装Django2、创建项目2.1 基于终端创建项目2.2 基于Pycharm创建项目2.3 两种方式对比 3、默认项目文件介绍4、APP5、启动运行Django5.1 激活App5.2 编写URL和视图函数对应关系5.3 启动Django项目5.3.1 命令行启动5.3.2 Pycharm启动5.3.3 views.…...
即时通讯技术文集(第37期):IM代码入门实践(Part1) [共16篇]
为了更好地分类阅读 52im.net 总计1000多篇精编文章,我将在每周三推送新的一期技术文集,本次是第37 期。 [- 1 -] 一种Android端IM智能心跳算法的设计与实现探讨(含样例代码) [链接] http://www.52im.net/thread-783-1-1.html […...
UV胶具有哪些特点和优势
1. 快速固化:UV胶在紫外线照射下能够迅速固化,固化时间通常在几秒钟到几分钟之间,大大提高了生产效率。 2. 高粘接强度:UV胶固化后,具有较高的粘接强度,能够在各种材料上实现可靠的粘接,提供持…...
python面试之mysql引擎选择问题
MySQL数据库提供了多种存储引擎,每种存储引擎有其特定的优势和场景适用。以下是几种常见的MySQL存储引擎及其特点: InnoDB: 支持事务,有回滚和提交事务的功能。 支持行级锁定,提供更高的并发。 支持外键约束&#…...
MT3031 AK IOI
思路:把每个节点存到堆(大根堆)里。 如果节点放入后总时间没有超过m则放入堆中;如果总时间超过了,就看堆头元素是否比新元素大。如果大,则删除堆头(反悔贪心)。 注意别忘记开long l…...
UE5自动生成地形二:自动生成插件
UE5自动生成地形二:自动生成插件 Polycam使用步骤 本篇主要讲解UE5的一些自动生成地形的插件 Polycam 此插件是通过现实的多角度照片自动建模生成地形数据,也是免费的。这里感谢B站up主古道兮峰的分享 Polycam网站 插件下载地址 插件网盘下载 提取码&a…...
二分图(染色法与匈牙利算法)
二分图当且仅当一个图中不含奇数环 1.染色法 简单来说,将顶点分成两类,边只存在于不同类顶点之间,同类顶点之间没有边。 e.g. 如果判断一个图是不是二分图? 开始对任意一未染色的顶点染色。 判断其相邻的顶点中,若未…...
ReactFlow的ReactFlow实例事件传参undefined处理状态切换
1.问题 ReactFlow的ReactFlow实例有些事件我们在不同的状态下并不需要,而且有时候传参会出现其它渲染效果,比如只读状态下我们不想要拖拉拽onEdgesChange连线重连或删除的功能。 2.思路 事件名称类型默认值onEdgesChange(changes: EdgeChange[]) >…...
Dockerfile 和 Docker Compose
Dockerfile 和 Docker Compose 是 Docker 生态系统中两个重要的组成部分,它们分别服务于不同的目的,但共同协助开发者和运维人员高效地管理和部署容器化应用。 Dockerfile Dockerfile 是一个文本文件,包含了构建 Docker 镜像所需的一系列指…...
多个文件 import 的相同模块里的对象
多个文件 import 的相同模块里的对象,是否永远都是同一个对象? 在store的index.js中 import vue from ‘vue’ import Vuex from ‘vuex’ 并配置有关对象 然后再app.vue中配置vm 在不同的文件中 import一个vue对象,在任何情况下&#…...
面试经典150题——验证回文串
面试经典150题 day25 题目来源我的题解方法一 双指针方法二 双指针 空间优化 题目来源 力扣每日一题;题序:125 我的题解 方法一 双指针 首先去除掉字符串中的无用字符,并将英文字符转换为小写,然后使用双指针来判断是否是回文串…...
YOLOv8的训练、验证、预测及导出[目标检测实践篇]
这一部分内容主要介绍如何使用YOLOv8训练自己的数据集,并进行验证、预测及导出,采用代码和指令的两种方式,参考自官方文档:Detect - Ultralytics YOLOv8 Docs。实践篇不需要关注原理,只需要把流程跑通就行,…...
光伏远动通讯屏的组成
光伏远动通讯屏的组成 远动通讯屏主要用于电力系统数据采集与转发,远动通讯屏能够采集站内的各种数据,如模拟量、开关量和数字量等,并通过远动通讯规约将必要的数据上传至集控站或调度系统。这包括但不限于主变和输电线路的功率、电流、电压等…...
营销H5测试综述
H5页面是营销域最常见的一种运营形式,业务通过H5来提供服务,可以满足用户对于便捷、高效和低成本的需求。H5页面是业务直面用户的端点,其质量保证工作显得尤为重要。各业务的功能实现具有通用性,相应也有共性的测试方法࿰…...
【C++随记4】C++二进制位操作运算符
在C中,二进制位操作运算符允许你直接对整数类型的变量的位进行操作。这些运算符包括: 按位与(Bitwise AND): & 按位或(Bitwise OR): | 按位异或(Bitwise XOR): ^ 按位取反&…...
风电厂数字孪生3D数据可视化交互展示构筑智慧化电厂管理体系
随着智慧电厂成为未来电力企业发展的必然趋势,深圳华锐视点紧跟时代步伐,引领技术革新,推出了能源3D可视化智慧管理系统。该系统以企业现有的数字化、信息化建设为基础,融合云平台、大数据、物联网、移动互联、机器人、VR虚拟现实…...
大模型市场爆发式增长,但生成式AI成功的关键是什么?
进入2024年,大模型市场正在爆发式增长。根据相关媒体的总结,2024年1-4 月被统计到的大模型相关中标金额已经达到2023年全部中标项目披露金额的77%左右;其中,从项目数量来看,应用类占63%、算力类占21%、大模型类占13%、…...
leetcode LCR088.使用最小花费爬楼梯
思路:DP 这道题相对来说比较基础,但是有时候容易出错的一点就是在dp递推的时候,由于我们的思路是从最后一步向着初始状态推的,所以在编写程序的时候也容易就直接推着走了。其实实际上我们倒着想只是为了推理,真正要递…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
