当前位置: 首页 > news >正文

力扣每日一题108:将有序数组转换为二叉搜索树

题目

简单

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 

平衡

 二叉搜索树。

示例 1:

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums 按 严格递增 顺序排列

面试中遇到过这道题?

1/5

通过次数

471.9K

提交次数

601.7K

通过率

78.4%

思路

平衡二叉搜索树有两个要求

1、每个节点左右子树的高度差不能超过1

2、每个节点的大于所有左子树结点,小于所有右子树结点。

要满足第一个条件的话,我们可以递归建树,每次将中间的值作为根节点,然后递归调用左右两部分。

要满足第二个条件,只需将root->left指向左边部分递归的结果,root->right指向右边部分递归的结果即可。

代码

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode *creat(int lo,int hi,vector<int>& nums){if(lo>hi) return NULL;int mid=(lo+hi)/2;TreeNode *root=new TreeNode;root->val=nums[mid];root->left=creat(lo,mid-1,nums);root->right=creat(mid+1,hi,nums);return root;}TreeNode* sortedArrayToBST(vector<int>& nums) {int lo=0,hi=nums.size()-1;TreeNode *root=creat(lo,hi,nums);return root;}
};

相关文章:

力扣每日一题108:将有序数组转换为二叉搜索树

题目 简单 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 平衡 二叉搜索树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9] 输出&#xff1a;[0,-3,9,-10,null,5] 解释&#xff1a;[0,-10,5,null,-3,null,9] 也…...

保护公司机密:避免员工带着数据说拜拜

公司的核心资产之一就是数据。无论是客户信息、研发代码、内部决议、财务报告、商业合同、设计图纸等都是公司的重要资产。如果这些数据在员工离职时被带走&#xff0c;或在员工在职期间不当行为导致数据泄露&#xff0c;将给公司带来重大损失。 然而&#xff0c;保护这些数据…...

kali apt update报错

错误信息&#xff1a; 获取&#xff1a;http:/dl.google.com/几inux/chrome/.deb stable InRelease 错误&#xff1a;http:/dl.google.com/linux/chrome/deb stable InRelease 由于没有公钥&#xff0c;无法验证下列签名&#xff1a;NO_PUBKEY4EB27DB2A3B88B8B 命中&#xff1a…...

7-1 图图图

某城市有n个景点&#xff0c;部分景点之间有巴士免费来回接送。(1) 给定某个景点x&#xff0c;如果从这个景点出发坐一次免费巴士&#xff0c;可以到达多少个不同的景点&#xff1f;(2) 判断景点a是否可以通过免费巴士&#xff08;可换乘&#xff09;到达景点b&#xff1b;(3) …...

Java(多线程)

取水&#xff1a; 主部分&#xff1a; package a0506.Test3;import java.util.Random;public class Test3 {public static void main(String[] args) {Well2 well2new Well2(10);WellThread Zsnew WellThread("------张三------",well2,new Random().nextInt(5));W…...

程序员必备的7大神器,效率飞起!

我们都知道程序员在工作时&#xff0c;会经常遇到任务繁重的情况&#xff0c;为了提高效率&#xff0c;程序员们也会借助一些软件&#xff0c;那么哪些软件可以帮助程序员们提高工作效率呢&#xff1f; 整理不易&#xff0c;关注一波&#xff01;&#xff01; 1. Xftp 7 Xft…...

揭秘文件加密利器:24年度最值得信赖的5大加密软件评测

数据安全与隐私保护已成为我们每个人都必须面对的重要问题。 文件加密软件作为保障数据安全的关键工具&#xff0c;其重要性不言而喻。 在众多的加密软件中&#xff0c;哪些软件能够在保障数据安全的同时&#xff0c;又具备良好的易用性和稳定性呢&#xff1f; 本文将为您揭秘…...

【仪酷LabVIEW AI工具包案例】使用LabVIEW AI工具包+YOLOv5结合Dobot机械臂实现智能垃圾分类

‍‍&#x1f3e1;博客主页&#xff1a; virobotics(仪酷智能)&#xff1a;LabVIEW深度学习、人工智能博主 &#x1f384;所属专栏&#xff1a;『仪酷LabVIEW AI工具包案例』 &#x1f4d1;上期文章&#xff1a;『【YOLOv9】实战二&#xff1a;手把手教你使用TensorRT实现YOLOv…...

鸿蒙应用开发系列 EX篇:HarmonyOS应用开发者基础认证

文章目录 系列文章背景认证考试题库参考注意:题库会不定时的进行具备调整甚至整体轮换,此为2024.5月版本注意:题库中题目的选项每次都会随机顺序,请参考内容判断题单选题多选题系列文章 鸿蒙应用开发系列 篇一:鸿蒙系统概述 鸿蒙应用开发系列 篇二:鸿蒙系统开发工具与环…...

基于Linux中的 进程相关知识 综合讲解

目录 一、进程的基本概念 二、pid&#xff0c;ppid&#xff0c;fork函数 三、进程的状态讲解 四、进程的优先级 五、完结撒❀ 一、进程的基本概念 概念&#xff1a; ● 课本概念&#xff1a;程序的一个执行实例&#xff0c;正在执行的程序等 ● 内核观点&#xff1a;担当…...

前端高频面试题 5.08

事件委托 事件委托是前端开发中常用的一种优化性能和代码可维护性的方法&#xff0c;它基于DOM的事件冒泡机制。当一个元素触发事件时&#xff0c;这个事件会按照从顶层到底层的顺序传播&#xff0c;直到最底层的元素&#xff08;通常是文档的根节点&#xff09;。事件委托利用…...

python 的继承、封装和多态

1. 继承&#xff08;Inheritance&#xff09; 继承是面向对象编程中的一个重要概念&#xff0c;它允许一个类&#xff08;子类&#xff09;继承另一个类&#xff08;父类&#xff09;的属性和方法。子类可以重用父类的代码&#xff0c;同时也可以扩展或修改父类的行为。 常用…...

数智结合,智慧合同让法务管理发挥内在价值

在当今这个信息化、数字化飞速发展的时代&#xff0c;数据已成为企业重要的战略资源。法务管理作为企业内部控制和风险防范的重要环节&#xff0c;其重要性不言而喻。然而&#xff0c;传统的法务管理模式往往存在效率低下、信息孤岛、反应迟缓等问题。在这样的背景下&#xff0…...

Ubuntu 安装docker

1: 卸载旧版本 如果你曾经安装过旧版本的 Docker&#xff0c;首先需要卸载它们&#xff1a; sudo apt-get remove docker docker-engine docker.io containerd runc2: 安装依赖工具 安装一些必要的工具&#xff0c;以便后续的安装过程能够顺利进行&#xff1a; sudo apt-ge…...

【北京迅为】《iTOP-3588开发板快速烧写手册》-第8章 TF启动

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…...

Helm 模板流程控制

Helm 的模板语言提供了多种控制结构&#xff0c;以允许模板作者根据条件逻辑生成模板内容。以下是 Helm 模板控制结构的核心内容总结&#xff1a; 控制结构 Helm 模板支持以下控制结构&#xff1a; if/else&#xff1a;用于创建条件语句&#xff0c;根据给定的条件包含或排除…...

Kansformer?变形金刚来自过去的新敌人

​1.前言 多层感知器(MLPs),也被称为全连接前馈神经网络,是当今深度学习模型的基础组成部分。 MLPs在机器学习中扮演着至关重要的角色,因为它们是用于近似非线性函数的默认模型,这得益于通用近似定理所保证的表达能力。然而,MLPs真的是我们能构建的最佳非线性回归器吗?尽管ML…...

今晚 19:00 | 从这两个问题入手,带你了解数据要素相关税务问题

五一假期已经结束&#xff0c;返工后当然是继续劳动啦~数据要素系列直播《星光对话》第三期也将在今晚19:00&#xff0c;继续跟大家见面。 本期直播&#xff0c;依然由 星光数智咨询总监 刘靖 主讲&#xff0c;带来&#xff1a;《数据要素相关税务问题解读》。 主要围绕两个问题…...

《QT实用小工具·五十一》带动画的 CheckBox

1、概述 源码放在文章末尾 该项目实现了带动画效果的多选框&#xff0c;鼠标放在上面或者选中都会呈现炫酷的动画效果&#xff0c;demo演示如下&#xff1a; 项目部分代码如下所示&#xff1a; #ifndef LINEARCHECKBOX_H #define LINEARCHECKBOX_H#include <QCheckBox> …...

PDT(police digital trunking )警用数字集群射频指标及测试方法

天线端口----测试传导 机箱端口----测试辐射 基本概念 传导测试方法 VBW3RBW 仪器设置 辐射测试方法...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...