图神经网络(GNNs)在时间序列分析中的应用
时间序列数据是记录动态系统测量的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。时间序列分析对于解锁可用数据中隐含的丰富信息至关重要。随着图神经网络(GNNs)的最近进展,基于GNN的方法在时间序列分析中出现了激增。这些方法可以明确地建模时间序列中的时间依赖性和变量间依赖性,这是传统方法和其他基于深度神经网络的方法难以做到的。
时间序列数据记录了动态系统在时间上的测量值,它们在金融、交通、能源、医疗保健等多个领域中扮演着至关重要的角色。通过对这些数据进行深入分析,我们不仅可以洞察历史趋势,还能预测未来事件,从而为决策提供科学依据。图神经网络(GNNs)作为一种强大的非欧几里得数据表示学习工具,已经在时间序列分析中展现出巨大的潜力。GNNs能够显式地建模时间序列中的时间依赖性和变量间依赖性,这使得它们在处理复杂时间序列关系方面具有独特的优势。
框架和分类法的介绍
论文提出了一个全面的框架和分类法,用于梳理和讨论GNNs在时间序列分析中的应用。这个框架从任务和方法论两个角度对现有的工作进行了分类。
任务导向的分类法
任务导向的分类法将GNNs的应用分为四个主要任务:
- 时间序列预测:预测未来的数据点,可以是单步或多步预测,短期或长期预测。
- 异常检测:识别时间序列中的异常或不寻常的模式。
- 分类:根据时间序列数据的模式将其分配到不同的类别中。
- 插补:估计并填补时间序列中的缺失数据点。
方法论框架
方法论框架则关注于如何将时间序列数据编码进GNNs,以及如何设计GNNs的架构来处理这些数据。这个框架包括以下几个关键组件:
- 空间模块:处理图结构数据,捕捉变量间的空间依赖性。
- 时间模块:处理时间序列数据,捕捉时间点间的时间依赖性。
- 图结构学习:学习数据的图结构,可以是基于启发式的方法,也可以是从数据中学习得到。
统一方法论框架的组成
我们的统一方法论框架包括以下几个部分:
- 数据预处理模块:对时间序列数据进行清洗和标准化。
- 空间-时间GNNs:使用GNNs来获取时间序列的表示。
- 下游任务预测模块:根据不同的分析任务(如预测、异常检测等)处理GNNs的输出。
框架和分类法的深度解析
图神经网络(GNNs)在时间序列分析中的应用通过一个精心设计的框架和分类法得到深入探讨。该框架整合了数据预处理、空间-时间图神经网络(STGNNs),以及下游任务预测模块,为处理时间序列数据提供了一个全面的方法论。在数据预处理阶段,关键步骤包括清洗、标准化以及处理缺失值,确保数据的质量和一致性。随后,STGNNs作为框架的核心,通过图结构捕捉时间序列数据中的复杂空间和时间依赖性,其中空间模块处理变量间关系,时间模块处理时间点间的关系,而图结构学习则负责从数据中提取或学习图的拓扑结构。
任务导向的分类法则将GNNs的应用分为四个主要任务:预测、异常检测、分类和插补。每个任务针对时间序列数据的不同分析需求,如预测任务关注未来数据点的估计,异常检测则旨在识别数据中的异常模式。分类任务通过学习时间序列的特征将其分配到不同的类别中,而插补任务则专注于填补数据中的缺失部分。这些任务的实现依赖于GNNs的能力,以图的形式编码时间序列数据,并利用图卷积或其他图神经网络操作来学习数据的深层次特征。
该框架和分类法为GNNs在时间序列分析中的研究提供了清晰的方向和系统的方法,不仅有助于理解现有研究的工作,也为未来的研究方向和应用提供了指导。
实际应用与案例研究
这些方法在实际应用中已经证明了它们的有效性。例如,在智能交通系统中,通过GNNs预测交通流量可以帮助减少拥堵;在医疗领域,通过GNNs进行异常检测可以及时发现病患的异常状态。
- 智能交通系统:GNNs在交通流量预测、拥堵分析和路线规划中发挥着重要作用。例如,通过分析城市交通传感器网络的数据,GNNs可以预测交通流量的时空分布,帮助交通管理部门优化信号灯控制策略,减少拥堵。
- 环境与可持续能源:在风能和太阳能预测方面,GNNs能够通过分析气象条件和地理位置关系来提高预测的准确性。这有助于风电场和太阳能发电厂更有效地进行能源管理和调度。
- 物联网(IoT):在智能家居、工业自动化和健康监测等IoT应用中,GNNs可以处理来自多个传感器的时间序列数据,以识别设备间的复杂关系,优化设备间的协同工作,提高整个系统的能效和响应速度。
- 医疗保健:GNNs在医疗数据分析中展现出巨大潜力,如在疾病预测、患者监护和个性化医疗中。通过分析患者的生理时间序列数据,GNNs可以帮助医生更准确地诊断疾病并制定治疗方案。
- 金融风险分析:在金融领域,GNNs可以用于预测股票市场的趋势、检测欺诈交易和分析信贷风险。通过分析交易时间序列数据中的模式,GNNs可以揭示不同金融实体之间的复杂联系。
- 城市规划:GNNs可以分析城市发展的时间序列数据,如人口迁移、房价变化和基础设施使用情况,以支持城市规划者做出更科学的决策。
- 流行病预测:在公共卫生领域,GNNs可以利用疾病传播的时间序列数据来预测疫情的发展趋势,帮助政府和卫生组织制定有效的防控措施。
这些应用案例展示了GNNs在处理时间序列数据时的多样性和适应性。通过将时间序列数据转换为图结构,GNNs不仅能够捕捉数据中的时空间关系,还能够揭示数据中的复杂模式和趋势,为各种实际问题提供解决方案。随着研究的深入,我们可以预见GNNs将在更多的领域中发挥重要作用,推动相关行业的技术进步和创新发展。
论文地址:https://arxiv.org/abs/2307.03759
论文源码:https://github.com/KimMeen/Awesome-GNN4TS
相关文章:

图神经网络(GNNs)在时间序列分析中的应用
时间序列数据是记录动态系统测量的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。时间序列分析对于解锁可用数据中隐含的丰富信息至关重要。随着图神经网络(GNNs)的最近进展,基于GNN的方法在时…...
Qt QShortcut快捷键类详解
1.简介 QShortcut是一个方便的工具类,用于在应用程序中创建快捷键。通过设置快捷键和关联的处理函数,可以实现快速执行某个操作的功能。 // 创建一个快捷键,关联到MyWidget类的keyPressEvent()函数 QShortcut *shortcut new QShortcut(QKe…...

003 redis分布式锁 jedis分布式锁 Redisson分布式锁 分段锁
文章目录 Redis分布式锁原理1.使用set的命令时,同时设置过期时间2.使用lua脚本,将加锁的命令放在lua脚本中原子性的执行 Jedis分布式锁实现pom.xmlRedisCommandLock.javaRedisCommandLockTest.java 锁过期问题1乐观锁方式,增加版本号(增加版本…...

Jackson工具,java对象和json字符串之间的互相转换
一、maven依赖引入jackson <dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId><version>2.12.5</version></dependency>jackson-databind依赖见下: <depend…...
【设计模式】之装饰器模式
系列文章目录 【设计模式】之模板方法模式 【设计模式】之责任链模式 【设计模式】之策略模式 【设计模式】之工厂模式(三种) 前言 今天给大家介绍23种设计模式中的装饰器模式。🌈 一、什么是装饰器模式 装饰器模式(Decora…...
leetcode_46.全排列
46. 全排列 题目描述:给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]示例 2&#…...

【牛客】[HNOI2003]激光炸弹
原题链接:登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 二维前缀和板题。 注意从(1,1)开始存即可,所以每次输入x,y之后,要x,y。 因为m的范围最大为…...

Docker与Harbor:构建企业级私有Docker镜像仓库
目录 引言 一、本地私有仓库 (一)基本概述 (二)搭建本地私有仓库 1.下载registry镜像 2.启动容器 3.上传本地镜像 4.客户端下载镜像 二、Harbor简介 (一)什么是 Harbor (二ÿ…...
推荐几个傻瓜式短视频去水印在线网站
在数字化时代,短视频已成为信息传播的重要方式之一。随着TikTok、Instagram Reels、抖音等平台的流行,短视频的制作和分享成为了日常生活的一部分。然而,在分享或编辑这些短视频时,去除水印成为了一项不可或缺的需求。水印是视频原…...

大模型LLM之SFT微调总结
一. SFT微调是什么 在大模型的加持下现有的语义理解系统的效果有一个质的飞跃;相对于之前的有监督的Pre-Train模型;大模型在某些特定的任务中碾压式的超过传统nlp效果;由于常见的大模型参数量巨大;在实际工作中很难直接对大模型训…...

【RocketMQ问题总结-2】
RocketMQ 消息持久化 Broker通过底层的Netty服务器获取到一条消息后,会把这条消息的内容写入到一个CommitLog文件里去(一个Broker进程就只有一个CommitLog文件,也就是说这个Broker上所有Topic的消息都会写入这个文件)。 同时&…...

掌握Android Fragment开发之魂:Fragment的深度解析(上)
Fragment是Android开发中用于构建动态和灵活界面的基石。它不仅提升了应用的模块化程度,还增强了用户界面的动态性和交互性,允许开发者将应用界面划分为多个独立、可重用的部分,每个部分都可以独立于其他部分进行操作。本文将从以下几个方面深…...
深度解读DreamFusion:一站式AI解决方案
DreamFusion是一款备受瞩目的人工智能解决方案,它整合了多种AI技术,为用户提供了一站式的解决方案。本文将全面解读DreamFusion,探讨其特点、功能和应用场景,助您深入了解这一创新工具。 1. 特点概述 DreamFusion具备以下显著特…...
JVM-02
字节码文件是一种特殊的文件格式,它包含了将源代码转换为机器可执行代码所需的指令集。字节码文件通常是由编译器将源代码编译为字节码的中间表示形式。 在Java中,字节码文件的扩展名为.class,它存储了编译后的Java代码。这些字节码文件可以在…...

【一起深度学习——NIN】
NIN神经网络 原理图:代码实现:输出结果: 原理图: 代码实现: import torch from torch import nn from d2l import torch as d2ldef nin_block(in_channels, out_channels, kernel_size, strides, padding):return nn.…...

数字工厂管理系统如何助力企业数据采集与分析
随着科技的不断进步,数字化已成为企业发展的重要趋势。在制造业领域,数字工厂管理系统的应用日益广泛,它不仅提升了生产效率,更在数据采集与分析方面发挥着举足轻重的作用。本文旨在探讨数字工厂管理系统如何助力企业数据采集与分…...
uniap之微信公众号支付
近来用uniapp开发H5的时候,需要接入支付,原来都是基于后端框架来做的,所以可谓是一路坑中过,今天整理下大致流程分享给大家。 先封装util.js,便于后面调用 const isWechat function(){return String(navigator.userA…...
Django知识点总结
因为最近在搞一个Python项目,使用的Django框架。所以快速学习了一下这个web框架。并做一些总结。 Django官网的介绍:Django is a high-level Python web framework that encourages rapid development and clean, pragmatic design. Built by experience…...

算法(C++
题目:螺旋矩阵(59. 螺旋矩阵 II - 力扣(LeetCode)) 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入&am…...

Python专题:六、循环语句(1)
补充知识 代码的注释 #描述性文字 阅读代码的人更好的理解代码 while循环语句 x<100条件控制语句,Totalx,Total自增加x,x1,x自增加1,x<100此条件满足时,执行while循环,当x101时,x101条…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...