深度学习论文: LightGlue: Local Feature Matching at Light Speed
深度学习论文: LightGlue: Local Feature Matching at Light Speed
LightGlue: Local Feature Matching at Light Speed
PDF: https://arxiv.org/pdf/2306.13643
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
LightGlue通过自适应地应对不同难度的图像对来改进视觉匹配,包括视觉重叠程度、外观变化和辨别信息量。对于易于匹配的图像对,其推理速度更快,类似于人类处理视觉信息的方式。它通过在每个计算块后预测对应关系、让模型自我评估是否需要进一步计算,并在早期阶段丢弃不可匹配的点来优化性能。在如SLAM等典型操作条件下,LightGlue在保持性能的同时带来了显著改进,通过动态调整网络大小而非减少其整体容量。

2 LightGlue
LightGlue 是由一系列(L 个)相同的层堆叠而成,这些层能够共同处理两组数据。每一层包含自注意力和交叉注意力单元,它们用于更新每个点的表示。随后,一个分类器会在每一层判断是否需要停止推理,以减少不必要的计算。最终,通过一个轻量级的头部从表示集合中计算得出一个部分分配。

2-1 Transformer backbone
Attention unit:
注意力单元使用MLP根据从源图像S中聚合的消息mI i ←S来更新状态xI i。消息通过注意力机制计算,是图像S中所有状态j的加权平均值。
Self-attention:
每个点关注同一图像中的所有点。通过不同的线性变换分解当前状态xi为键ki和查询qi,并计算点i和j之间的注意力分数aij,该分数基于点的相对位置编码。位置编码通过旋转矩阵R§捕捉相对位置信息,允许模型检索相对位置的点。
Cross-attention:
图像I中的每个点关注另一张图像S中的所有点。计算键ki但不计算查询,使得注意力分数aIS ij为两键的相似度。由于跨图像的相对位置没有意义,因此不添加位置信息。这种方法节省了计算成本,只需计算一次I ←S和S ←I消息的相似性。
2-2 Correspondence prediction
本文设计了轻量级头部来预测任何层更新后的分配。首先计算点对的相似度矩阵S,并为每个点计算可匹配性分数σi。接着,将相似性和可匹配性分数结合成软部分分配矩阵P,以确定哪些点对形成对应关系。选择满足阈值τ和行/列最大值的点对。
分配矩阵 P:
![]()
其中
![]()
![]()
2-3 Adaptive depth and width
引入两种机制以减少计算和节省推理时间:一是根据图像对难度调整层数;二是提前剔除确信的无效点。LightGlue 在每层结束时推断各点分配的置信度,高置信度表示该点表示可靠,可用于提前输出预测并停止推理。引入的紧凑MLP在最坏情况下仅增加2%的推理时间。
Exit criterion: 对于层ℓ,如果 c i > λ ℓ c_{i} > λ_{ℓ} ci>λℓ,则点被视为可靠。当可靠点的比例超过α时,停止推理。 λ ℓ λ_{ℓ} λℓ逐层递减,基于分类器的验证准确率。 α α α控制准确率和推理时间的权衡。

Point pruning: 当不满足退出准则时,丢弃预测为可靠但无法匹配的点,它们对后续匹配无帮助。这减少了计算量,而不影响准确率。

3 Experiments

相关文章:
深度学习论文: LightGlue: Local Feature Matching at Light Speed
深度学习论文: LightGlue: Local Feature Matching at Light Speed LightGlue: Local Feature Matching at Light Speed PDF: https://arxiv.org/pdf/2306.13643 PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: https://github.com/shanglianlm0525/…...
全面解析C++11与C++20线程(含内容)
昨晚跟一些小伙伴做了第一次直播尝试,一起探讨了C11 thread与 C20的jthread,于此同时给大家出了几个问题,在直播之外不会公布答案,所以以后直播还是得跟着走起。 总共有22人参加直播,氛围相当不错,没有录播…...
【八股】消息中间件
通用MQ问题 使用场景 异步发送(验证码、短信、邮件)MYSQL和Redis,ES之间的数据同步分布式事务削峰填谷消息的重复消费问题 👉定义:消费者已经消费了消息,但是可能由于网络抖动或者消费者挂了导致ack回执没有发送给MQ 👉解决方案 为每条消息设置一个唯一的标识id,在…...
【17-Ⅰ】Head First Java 学习笔记
HeadFirst Java 本人有C语言基础,通过阅读Java廖雪峰网站,简单速成了java,但对其中一些入门概念有所疏漏,阅读本书以弥补。 第一章 Java入门 第二章 面向对象 第三章 变量 第四章 方法操作实例变量 第五章 程序实战 第六章 Java…...
weblogic 反序列化 [CVE-2017-10271]
一、漏洞描述 这个漏洞是wls-wsat这个接口出了问题,Weblogic的WLS Security组件对外提供webservice服务,其中使用了XMLDecoder来解析用户传入的XML数据,在解析的过程中出现反序列化漏洞,导致可执行任意命令。攻击者发送精心构造的…...
CoPilot 产品体验:提升 OpenNJet 的控制管理和服务提供能力
文章目录 前言系统架构介绍CoPilot 配置CoPilot 插件规范 体验 CoPilot 实例CoPilot: Broker 实例CoPilot: Ctrl 实例 开发其他语言编写的 CoPilot目标主要思路具体实现执行 go 程序代码 功能扩展总结 前言 CoPilot 是 OpenNJet 的一个重要组成部分,它在 Master-Wo…...
Leetcode 第396场周赛 问题和解法
问题 有效单词 有效单词需要满足以下几个条件: 至少包含3个字符。 由数字0-9和英文大小写字母组成。(不必包含所有这类字符。) 至少包含一个元音字母。 至少包含一个辅音字母。 给你一个字符串word。如果word是一个有效单词,则…...
OC foudation框架(上)学习
foundation框架 文章目录 foundation框架字符串(NSString && NSMutableString)NSString的其他功能NSMutableString 日期与时间 (NSDate)2.1 日期与时间(NSDate)2.2日期格式器日历与日期组件定时器&…...
【机器学习300问】83、深度学习模型在进行学习时梯度下降算法会面临哪些局部最优问题?
梯度下降算法是一种常用的优化方法,用于最小化损失函数以训练模型。然而,在使用梯度下降算法时,可能会面临以下局部最优问题。 (一)非凸函数的局部极小值 问题描述:在复杂的损失函数中,如果目…...
基于springboot的校园管理系统源码数据库
基于springboot的校园管理系统源码数据库 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,校园管理系统当然也不能排除在外。校园管理系统是以实际运用为开发背景,…...
图形网络的自适应扩散 笔记
1 Title Adaptive Diffusion in Graph Neural Networks(Jialin Zhao、Yuxiao Dong、Ming Ding、Evgeny Kharlamov、Jie Tang)【NIPS 2021】 2 Conclusion The neighborhood size in GDC is manually tuned for each graph by conductin…...
vue基础配置
vite.config.ts import { defineConfig } from vite import vue from vitejs/plugin-vue import path from "path"; //引入svg需要用到的插件 import { createSvgIconsPlugin } from vite-plugin-svg-icons //mock插件提供方法 import { viteMockServe } from vite-…...
C++基础中的存储类别
存储的类别是变量的属性之一,C语言定义了4种变量的存储类别,分别是auto变量、static变量、register变量和extern变量。以下重点介绍这几种类型。 一、auto变量 auto变量是C默认的存储类型。函数内未加存储类型说明的变量均被称为自动变量,即…...
【NPM】Nginx Proxy Manager 一键申请 SSL 证书,自动续期,解决阿里云SSL免费证书每3个月失效问题
文章目录 1、NPM 简介2、实战Step 1:环境搭建 也可以看作者安装笔记 Step 2:创建容器 2.1 在系统任意位置创建一个文件夹,此文档以~/nginx-proxy-manager为例。2.2 创建docker-compose.yaml2.3 启动NPM服务 Step 3:配置反向代理3…...
教你解决PUBG绝地求生游戏中闪退掉线无法重连回去的问题
《绝地求生》(PUBG),作为一款在全球范围内掀起热潮的战术竞技游戏,以其栩栩如生的战场环境和令人心跳加速的生存冒险博得了广大玩家的青睐。然而,一些玩家在经历了一场惊心动魄的对局后,却面临了一个不大不…...
24 Debian如何配置Apache2(4)LAMP+phpMyAdmin部署
作者:网络傅老师 特别提示:未经作者允许,不得转载任何内容。违者必究! Debian如何配置Apache2(4)LAMP+phpMyAdmin部署 《傅老师Debian小知识库系列之24》——原创 ==前言== 傅老师Debian小知识库特点: 1、最小化拆解Debian实用技能; 2、所有操作在VM虚拟机实测完成;…...
centos安装paddlespeech各种报错解决方案
背景 windows系统安装paddlespeech一路顺利 centos安装之前也是正常 今天centos再次安装各种报错,避免以后遇到浪费时间,记录下来,也给大家节约时间 报错 报错1 module numpy has no attribute complex. 解决方案 降低numpy # 1. 卸载当前numpy库 pip uninstall numpy…...
谈基于ATTCK框架的攻击链溯源
引言 网络安全在当今数字化时代变得尤为关键,而MITRE公司开发的ATT&CK框架则成为了安全专业人员的重要工具。ATT&CK是一种广泛使用的攻击行为分类和描述框架。其目的在于提供一个共同的语言,使安全专业人员能够更好地理解攻击者的行为和目标&…...
在Ubuntu下搭建自己的以太坊私有链
最近要对链及链上应用进行压测,为了方便操作及分析问题,就自己搭建了一个eth私链。当前版本安装官方指引发现有卡点,于是决定整理一个文档,为其他有需要的朋友提供便捷操作,节约时间。 一、环境配置 linux操作系统:Ubuntu 20.04.6 LTS (Focal Fossa) go version: go1…...
巩固学习4
python中函数逆置的几种方法 s input()for i in range(len(s)-1,-1,-1):#从最后一位开始,步长为-1print(s[i],end)用for语句循环逆置 s input() s list(s) n len(s) for i in range(n//2):s[i],s[n-1-i] s[n-1-i],s[i]#从中间反转字符串 res "".j…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...
WEB3全栈开发——面试专业技能点P4数据库
一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库,基于 mysql 库改进而来,具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点: 支持 Promise / async-await…...
