当前位置: 首页 > news >正文

Cholesky分解(A=L * L^T)

Cholesky分解是一种用于解线性方程组和计算矩阵平方根的算法,特别适用于对称正定矩阵。这种方法相比于其他解法(如高斯消元法)在数值稳定性上通常有更好的表现,并且能够有效地利用矩阵的对称性和正定性。下面简要介绍如何使用Cholesky分解求解线性方程组 Ax = b,其中A是对称正定矩阵。

Cholesky分解的步骤:

  1. 分解: 首先,将矩阵A进行Cholesky分解,即找到一个下三角矩阵L,使得 A = L ∗ L T A = L * L^T A=LLT。这个过程是通过逐行进行的,对于矩阵A的第k行和第k列元素,按照以下公式计算L的元素:

    l k k = a k k − ∑ j = 1 k − 1 l k j 2 l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{kj}^2} lkk=akkj=1k1lkj2

    l i k = 1 l k k ( a i k − ∑ j = 1 k − 1 l i j l k j ) , i > k l_{ik} = \frac{1}{l_{kk}}(a_{ik} - \sum_{j=1}^{k-1} l_{ij}l_{kj}), \quad i > k lik=lkk1(aikj=1k1lijlkj),i>k

    这样,就可以得到下三角矩阵L。

  2. 求解: 一旦得到了L,就可以通过两个步骤来解线性方程组 A x = b Ax=b Ax=b

    • 前向替换:首先解 L y = b Ly=b Ly=b,得到y。这可以通过以下递推式完成:
      y 1 = b 1 l 11 y_1 = \frac{b_1}{l_{11}} y1=l11b1
      y i = b i − ∑ j = 1 i − 1 l i j y j l i i , i = 2 , 3 , . . . , n y_i = \frac{b_i - \sum_{j=1}^{i-1} l_{ij}y_j}{l_{ii}}, \quad i = 2, 3, ..., n yi=liibij=1i1lijyj,i=2,3,...,n

    • 后向替换:然后解 L T x = y L^Tx=y LTx=y,得到最终的解x。这一步是:
      x n = y n x_n = y_n xn=yn
      x i = y i − ∑ j = i + 1 n l j i x j , i = n − 1 , n − 2 , . . . , 1 x_i = y_i - \sum_{j=i+1}^{n} l_{ji}x_j, \quad i = n-1, n-2, ..., 1 xi=yij=i+1nljixj,i=n1,n2,...,1

示例代码(Python)

以下是一个简单的Python示例,使用NumPy库来实现Cholesky分解求解线性方程组:

import numpy as npdef cholesky_solve(A, b):# Cholesky分解L = np.linalg.cholesky(A)# 前向替换求yy = np.zeros_like(b)for i in range(len(b)):if i == 0:y[i] = b[i] / L[i, i]else:y[i] = (b[i] - np.dot(L[i, :i], y[:i])) / L[i, i]# 后向替换求xx = np.zeros_like(y)for i in reversed(range(len(b))):if i == len(b) - 1:x[i] = y[i]else:x[i] = y[i] - np.dot(L[i+1:, i], x[i+1:])return x# 示例矩阵A和向量b
A = np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]])
b = np.array([1, 2, 3])# 求解
x = cholesky_solve(A, b)
print("解:", x)

请注意,上述代码直接实现了Cholesky分解和求解的过程,而在实际应用中,通常会直接使用像NumPy这样的库中的内置函数numpy.linalg.cholesky来完成分解,以及相关函数来简化求解过程。

相关文章:

Cholesky分解(A=L * L^T)

Cholesky分解是一种用于解线性方程组和计算矩阵平方根的算法,特别适用于对称正定矩阵。这种方法相比于其他解法(如高斯消元法)在数值稳定性上通常有更好的表现,并且能够有效地利用矩阵的对称性和正定性。下面简要介绍如何使用Chol…...

2024大模型新应用井喷即将到来,算力问题如何解决?

#大模型新应用 #NLP #智合同 随着人工智能技术的加速演进,AI大模型已成为全球科技竞争的新高地、未来产业的新赛道、经济发展的新引擎。大模型的快速发展,特别是在自然语言处理(NLP)和计算机视觉(CV)等…...

SpringBoot 七牛云 OSS 私有模式 获取访问链接

目录 一、问题引出 二、在SpringBoot中获取私有访问路径的操作 一、问题引出 由于七牛云OSS的公有模式存在被盗刷的风险,可能导致服务器额外的费用,于是我选择私有模式进行操作。私有模式的访问路径是一个问题,因为需要对应着token和e这两…...

python-模块-网络编程-多任务

一、模块 1-1 Python 自带模块 Json模块 处理json数据 {"key":"value"} json不是字典 本质是一个有引号的字符串数据 json注意点 {} 中的数据是字符串引号必须是双引号 使用json模块可以实现将json转为字典,使用字典的方法操作数据 。 或者将…...

火狐浏览器网页翻译

火狐浏览器网页翻译 火狐浏览器的翻译功能并不支持中文,无法将中文翻译成其他语言,也不支持将其他语言翻译成中文。如果需要翻译英文网页,可以安装翻译插件来帮助解决这个问题。 安装翻译插件的步骤如下: 打开火狐浏览器&#xff…...

R语言数据分析案例以及要点和难点

该案例将涵盖数据读取、数据清洗、探索性数据分析(EDA)、数据可视化和简单的统计分析等多个方面。本案例将以一家零售商店的销售数据为例,使用R语言进行数据分析。 1. 数据准备 假设我们有一个名为sales_data.csv的CSV文件,其中包含了零售商店的销售数据。该文件包含以下列…...

【STL源码剖析-空间配置器】stack、queue简单实现

举头天外望 无我这般人 目录 stack 的概述 stack 的实现 queue 的概述 queue 的实现 契子✨ 我们之前学过了 vector、list 这些 STL 的(容器) 而我们今天将要学习空间配置器 -- stack、queue,那什么是空间配置器呢? 简单来讲就是…...

VR导航的实现原理、技术优势和应用场景

VR导航通过虚拟现实技术提供沉浸式环境,结合室内定位技术实现精准导航。目前,VR导航已在多个领域展现出其独特的价值和潜力,预示着智能导航系统的未来发展。 一、实现原理 VR导航技术依托于虚拟现实(VR)和室内定位系统。VR技术利用计算机模…...

淘宝镜像的https证书过期

错误原因: 淘宝镜像过期 早在 2021 年,淘宝就发文称,npm 淘宝镜像已经从 http://registry.npm.taobao.org 切换到了 http://registry.npmmirror.com。旧域名也将于 2022 年 5 月 31 日停止服务(直到 HTTPS 证书到期才真正不能用了…...

VSCODE 常用快捷键

快捷按键 注释 CTRL /CTRL KSHIFT ALT A取消注释 CTRL /CTRL KSHIFT ALT A搜索文件 Ctrl P移动到某一行 Ctrl g打开一个新窗口 Ctrl Shift N关闭窗口 Ctrl Shift W新建文件 Ctrl N文件间切换 Ctrl Tab全部文件搜索 Ctrl Shift F全屏 F11 打开文件出现中文乱码 文件右下角…...

医院该如何应对网络安全?

在线医生咨询受到很多人的关注,互联网医疗行业的未来发展空间巨大,但随着医院信息化建设高速发展 医院积累了大量的患者基本信息、化验结果、电子处方、生产数据和运营信息等数据 这些数据涉及公民隐私、医院运作和发展等多因素,医疗行业办…...

【qt】多窗口开发

多窗口开发 一.应用场景二.嵌入的窗口1.设计Widget窗口2.创建窗口3.添加窗口4.总代码 三.独立的窗口1.创建窗口2.显示窗口 四.总结 一.应用场景 多窗口,顾名思义,有多个窗口可以供我们进行操作! 截个小图,你应该就知道了 OK,话不多说,直接开干,先来设计我们的主窗口 需要蔬菜…...

iOS Hittest 机制和实际应用

Hittest 机制原理 hitTest的原理就是,当我们点击的时候,会触发 window的 hittest方法,在该方法中会首先使用point inside方法判断 点击的地方是否在window范围内,如果在的话,就倒序遍历姿子视图,然后将poi…...

C# 工厂模式学习

工厂模式(Factory Pattern)是一种创建型设计模式,它提供了一种创建对象的接口,而不是通过具体类来实例化对象。工厂模式可以将对象的创建过程封装起来,使代码更具有灵活性和可扩展性。 工厂模式有几种常见的实现方式&…...

AI生成微信职业头像

加油,新时代打工人! 真别说,还挺好看的 https://chatglm.cn/main/alltoolsdetail...

遥感图像的深度学习的任务类型

在遥感图像的深度学习任务中,利用深度学习技术处理和分析遥感图像已经成为一个重要的研究方向。遥感图像来自卫星、无人机等设备,包含了丰富的地球表面信息。以下是遥感图像深度学习中的主要任务类型: 1. 图像分类(Image Classif…...

162.二叉树:填充每个节点的下一个右侧节点指针(力扣)

代码解决 /* // Definition for a Node. class Node { public:int val;Node* left;Node* right;Node* next;Node() : val(0), left(NULL), right(NULL), next(NULL) {}Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}Node(int _val, Node* _left, Node* _…...

NLP(20)--知识图谱+实体抽取

前言 仅记录学习过程,有问题欢迎讨论 基于LLM的垂直领域问答方案: 特点:不是通用语料;准确度要求高,召回率可以低(转人工);拓展性和可控性(改变特定内容的回答&#xf…...

【mysql数据库】mycat中间件

MyCat 简介 Mycat 是数据库 中间件 。 1、 数据库中间件 中间件 是一类连接软件组件和应用的计算机软件, 以便于软件各部件之间的沟通 。 例子 Tomcat web 中间件 。 数据库 中间件 连接 java 应用程序和数据库 2、 为什么要用 Mycat ① Java 与数据库紧耦合 …...

满帮集团 Eureka 和 ZooKeeper 的上云实践

作者:胡安祥 满帮集团,作为“互联网物流”的平台型企业,一端承接托运人运货需求,另一端对接货车司机,提升货运物流效率。2021 年美股上市,成为数字货运平台上市第一股。根据公司年报,2021 年&a…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...