做网站的市场风险分析及对策/常用的网络推广方法
我曾经看到有人在讨论过商业智能BI的部署对于企业是否有实际意义,现在市场的数据已经证明商业智能BI在商业世界中,在企业的实践中证明了自己的价值,得到了广泛的认可。
一、什么是BI
有一点可能很多人没有想到,实际上商业智能BI的相关概念已经有了数十年的发展历史。在这段发展过程中,商业智能BI形成了一套成熟的理论和产品体系,并且在现代的信息化、数字化加成下,成为了各行各业企业的成熟产品。
商业智能BI的定义其实很简单,简单概括一下就是,商业智能是一套完整的由数据仓库、查询报表、数据分析等组成的数据类技术解决方案,能够实现业务流程和业务数据的规范化、流程化、标准化,打通ERP、OA、CRM等不同业务信息系统,整合归纳企业数据。
商业智能BI - 派可数据商业智能BI可视化分析平台
商业智能BI是非常全面的数据类技术解决方案,比如商业智能BI可以制作满足不同部门、不同层级员工的数据可视化报表,可以帮助一线业务人员实现业务的追踪、预测、复盘等操作;也可以帮助企业高层管理人员,通过商业智能BI的管理驾驶舱、核心KPI指标、集团看板等,全面获取企业信息,辅助进行决策。
将商业智能BI核心内容进行总结,大致有三大特征:
- 一套完整的由数据仓库、查询报表、数据分析等组成的数据类技术解决方案;
- 将企业中不同系统(ERP、OA)中的数据打通并进行有效的整合;
- 利用合适的查询和分析工具快速准确地提供报表,为企业提供决策支持。
商业智能BI - 派可数据商业智能BI可视化分析平台
商业智能BI在企业中确实十分重要,这是因为商业智能BI在企业中发挥着承上启下的作用,往下看商业智能BI能打通ERP、OA、CRM等不同业务信息系统,并将清洗后的数据统一存储到数据仓库;往上看商业智能BI可以提供不同主题、形式的数据可视化报表,通过数据可视化分析全面展现企业发展状况,辅助管理人员进行决策。
商业智能BI可以根据企业数据生命周期的不同阶段划分为三个层次:
第一层,可视化分析展现层 - 商业智能BI的需求层,一方面代表了用户的需求,用户想看什么、要看什么、另一方面也代表了用户要分析什么,这些就在这一层进行展现。
第二层,数据模型层 - 商业智能BI数据仓库,主要负责企业数据的分析模型,完成从业务计算规则向数据计算规则的转变。
第三层,数据源层 - 商业智能BI的数据层,不同部门、业务线的业务信息系统,其底层数据库的数据通过ETL抽取到商业智能BI的数据仓库中,建模分析等等,最终支撑到前端的可视化分析展现。
二、BI在企业IT信息化中的位置
上边刚提到,商业智能BI在企业中的位置主要是承上启下,是信息化建设中的重要一环。商业智能BI围绕数据形成了一整套完整的数据价值体系,充分发挥了数据在企业中产生的价值。
谈到商业智能BI在企业IT信息化中的位置,首先要了解企业的信息化建设是什么。一般来说,企业的信息化建设具有通用性,可以统一把大部分的企业的 IT 信息化分为两个阶段:一个是业务信息化,一个是数据信息化。
企业信息化 - 派可数据商业智能BI可视化分析平台
这两个部门相互独立又互相产生影响,但总的来说还是把数据当做其中的基础,业务信息化产生数据并通过数据优化业务本身,数据信息化利用数据但也可以让数据发挥作用,优化业务信息化。
业务信息化 - 企业使用的ERP、CRM、OA以及自建的业务信息系统等都统称为业务信息化。业务信息化的主要作用是优化调整企业的业务流程,通过规范化、标准化、线上化,来提高业务运转效率、降低企业人力、时间、精力等成本,沉淀大量业务数据等,是业务管理思路的体现,也是现代的企业管理方式。
数据信息化 - 像我们经常所听到的大数据、商业智能BI、数据分析、数据挖掘等我们都统称为数据信息化。数据信息化可以帮助企业全面的了解企业的经营管理,将企业经营管理模式从经验驱动调整为到数据驱动,降低情绪、心理等主观影响,形成以数据为基础的业务决策支撑,提高决策的准确性,这是企业更高层次的企业管理方式。
企业信息化 - 派可数据商业智能BI可视化分析平台
企业的信息化建设是一个完整的过程,没有业务系统的建设,就不会有数据的沉淀,而没有数据的沉淀,企业也就没有部署商业智能BI的基础。这就是业务信息化和数据信息化的双向作用,能够让业务系统推动商业智能BI的部署,也能让商业智能BI提高业务系统的效果。
三、谁是BI的主要用户?
商业智能BI - 派可数据商业智能BI可视化分析平台
业务信息化的主要使用对象 - 业务信息化的主要使用对象是一线业务人员,所以业务信息化的使用人群更多是从业务视角出发,针对业务进行录入数据、记录流程、查看业务信息等。
数据信息化的主要使用对象 - 数据信息化的主要使用对象是管理决策人员,在企业的经营管理等日常流程中,决策人员更多是从管理视角利用商业智能BI等数据类技术解决方案去定位问题、分析问题,最终形成业务决策。
四、数据孤岛到底说明了什么?
企业发展到一定程度,因为数据量的增加,也因为信息化建设的必要性,企业会为不同部门建设相应的业务信息化系统。这些业务信息化系统(ERP、OA、CRM)可以规范业务流程,形成标准化的业务模式,并通过系统数据库自动沉淀业务数据,为企业积累数据资产。毫无疑问,数据价值凸显的当下,能够沉淀业务数据,这当然是一件好事。
但这些不同部门、不同业务信息系统数据库中的数据往往无法互通,只能在各自数据库中储存,无法统一进行利用,没有针对企业整体的全局视角。这样一来,每个部门、每个业务系统的数据都相互分隔,就像海外一座座孤岛,彼此无法连接,无法交流,这就是平时经常听到的数据孤岛。
商业智能BI - 派可数据商业智能BI可视化分析平台
商业智能BI作为数据类技术解决方案,在面对数据孤岛问题时,能够通过数据信息化,利用数据仓库和数据可视化解决企业面临的“数据孤岛”“信息孤岛”问题,所以商业智能BI需要企业高层管理人员进行规划,并主要为企业各层级管理人员提供决策信息,辅助进行决策。
管理驾驶舱 - 派可数据商业智能BI可视化分析平台
所以在介绍商业智能BI的时候,必须要搞清楚不同人员的需求。站在企业不同员工角度,有的人认为是有数据孤岛存在的,一定要解决。有的人是不认为有数据孤岛存在的,亦或是即使存在对他们也没有太大影响,所以不用解决,其根本原因是没有把握商业智能BI真正的服务对象。
五、商业智能BI从业务系统取数据取数的方式
商业智能BI是通过访问和连接业务系统数据源数据库的方式来进行取数的,不管是什么样类型的数据库,商业智能BI通过ETL连接数据库抽取业务系统原表数据到数据仓库中加工处理,最后支撑到前端的可视化分析报表展现。
商业智能BI - 派可数据商业智能BI可视化分析平台
之前有朋友这么提问的:数据源层是需要开发接口吗?
其实一般来说是不需要的,基本上这么提问的都是经历过软件系统的接口对接,软件系统的接口对接是因为有的业务软件是 JAVA 开发的,有的是 .NET 开发的,有的是 B/S 架构,有的是 C/S 架构。
软件系统之间的接口是需要开发参与的,主要是串联不同软件的业务流程,这种接口是需要动代码的。但商业智能BI在获取数据的接口不一样,是与业务系统软件自身无关的,是只需要访问和连接业务系统背后的数据库就可以的,直接从数据库取数,因此是不需要软件接口,或者没有软件接口访问这种概念的。
除非一种情况,这个业务系统是公有云,纯SAAS模式,这种情况下就只能通过软件对外开放的API接口取数了。
某医药行业销售人员绩效分析 - 派可数据商业智能BI可视化分析平台
某白酒行业渠道终端管理分析 - 派可数据商业智能BI可视化分析平台
六、数据中台、商业智能BI、大数据之间的关系应该如何理解?
系统的商业智能BI在遇到大数据量、非结构化数据处理的场景,底层的数据仓库就升级为大数据的数据仓库架构,这就是大数据下的商业智能BI分析;在大数据的数据仓库架构基础之上,往左边更加拓展了数据的采集能力,在中间除了原有大数据架构的数据仓库建模之外,更加加入了数据资产的概念、数据资产盘点、数据资产管理,靠右扩展了数据服务的能力,将数据中台中按照一定规则处理好的数据打包对外提供服务。因此,大数据架构下的数据采集、数据仓库建模、数据资产管理和数据服务就构成了数据中台的几大核心。
数据可视化 - 派可数据商业智能BI可视化分析平台
数据中台的底子是大数据架构,数据仓库是传统商业智能BI数据仓库的大数据升级,而商业智能BI就变成了数据中台之上的应用层,利用中台的数据服务获取数据做分析展现。
这就是商业智能BI、大数据、数据中台这三者的关系和在不同数据场景、服务场景下的演变过程,看明白了这个过程,应该就不会再轻易的混淆他们的概念。至于商业智能BI、大数据、数据中台应该选择哪个,其实说到底如何选择合适的技术路线、技术架构,最终还是取决于企业自身到底要解决什么,不能盲目选择。盲目选择的结果就是大投入,小产出没有达到预期的期望。我们还是应该聚焦到需求本身,需求为王。
七、关于商业智能 BI 认知上的几大误区
很多企业把商业智能BI当做纯粹的报表工具使用,输出的形式变成了可视化图表,可图表展示的内容还是以前的部门业务信息,只展现了一线业务部门的基本情况,管理人员还是需要花费大量时间精力去了解企业整体的发展情况。
商业智能BI - 派可数据商业智能BI可视化分析平台
我这里总结了一下,大家对商业智能 BI 的理解常会碰到的一些误区:
1.商业智能 BI 就是报表可视化,就是一堆可视化图表,商业智能BI 就是前端可视化。
2.商业智能BI就是一个拖拉拽的分析工具产品。
3.商业智能BI就是商业智能BI,跟数据仓库没有关系。
4.有了商业智能BI就不需要数据仓库建模,业务人员就可以自己做商业智能BI分析,就可以拖拉拽做商业智能BI分析。
5.商业智能BI 就是业务驱动的,不需要 IT 人员支撑,敏捷商业智能BI不需要 IT 介入。
6.商业智能BI直连不香吗?直接连接数据源不就可以做分析,不需要数据仓库。
首先简要纠正一下对于这些问题的理解。
1、商业智能 BI 就是报表可视化,就是一堆可视化图表,BI 就是前端可视化。
商业智能BI是一套完整的有数据仓库、数据分析、数据报表等组成的数据技术类的解决方案,在一个 BI 项目中,20% 的时间做前端分析报表,80% 的时间都在底层数据仓库的设计、ETL 的开发、取数开发等工作。
所以可视化报表只是商业智能 BI 的最终呈现,但不是 商业智能BI 的全部。
2、商业智能 BI 就是一个拖拉拽的分析工具产品。
拖拉拽的可视化分析工具准确来讲只能解决 商业智能BI 的一部分,即可视化分析。但其实 商业智能BI 所包括的技术范围还是比较广的,涉及到从底层数据取数到前端展现分析的各个方面。
单纯拖拉拽的商业智能BI可视化分析工具严格来讲只能定位于个人和部门级,和企业级的商业智能BI 有很大的不同,所以单纯的上一个商业智能BI分析工具发挥不了商业智能BI的真正作用,也替代不了商业智能BI的位置。
3、以前也总有人说商业智能BI就是业务驱动,商业智能BI就是 BI,跟数据仓库没有关系。
这个问题很有深度,在以前我也这么认为过,总觉得有了商业智能BI就不需要数据仓库建模,业务人员就可以自己做 商业智能BI分析,就可以拖拉拽做 商业智能BI分析,不需要IT人员支撑,敏捷商业智能BI不需要 IT 介入,不需要建数据仓库。
管理驾驶舱大屏 - 派可数据商业智能BI可视化分析平台
但凡有任何商业智能BI的销售或者售前告诉用户,你们企业的商业智能BI项目不需要构建数据仓库,直接通过商业智能BI分析工具拖拉拽就可以搞定企业里面所有的分析,不需要IT人员支撑,业务人员完全可以自己搞定... 类似于敢这样承诺的,要么是对商业智能BI不懂,要么就是真忽悠。
在企业级的商业智能BI项目建设中,真正能做到完全靠业务人员简单拖拉拽一些就能随便实现数据可视化分析,至少在我个人从业的十几年工作经验中,95%以上的企业都做不到。我服务过的重点企业包括:SHP( Security Health Plan )、微软(中国)、微软(美国)、VWFC( 大众金融 )等。
VWFC 做的算是非常不错的,少有的业务人员自己动手做很多报表,线上跑了几千张报表。为什么? 因为底层数据仓库就搭建了很多年,底层数据架构相对比较规范。Business Driven 业务驱动,它的前提是什么?
1) 底层数据质量很规范,数据仓库架构很完整,不让业务人员碰底层数据,ETL、取数、指标计算等等统统都是 IT 部门来维护。
2) 业务人员通过培训要熟练掌握商业智能BI前端报表工具的使用,要很懂放出来的数据分析模型接口。
3) 业务人员要非常熟悉业务和数据。
第 2)和第 3)条很多企业没有问题,第 1)条直接弄个前端 商业智能BI 工具让业务人员解决,能解决掉吗? 很显然业务人员是不具备这种能力的。
这就是一到培训的时候,商业智能BI工具使用起来很简单,但是一旦到实际的企业 商业智能BI 项目开发就发现寸步难行。因为培训的时候,给出的数据表都是经过选择的,永远都是质量很高的、规范的只需要简单左表连右表例如销售订单表、订单明细表,自然很容易把可视化报表给实现出来。
数据可视化 - 派可数据商业智能BI可视化分析平台
但是在实际企业 商业智能BI 项目分析中,分析指标的计算规则绝非简单几张表关联就可以解决的,不信的话可以挑战一下一个实际的指标计算逻辑:挑战一个 ETL 数据清洗的小案例 在数据库中就一张数据表,数据理解起来也很简单,但很多 商业智能BI 开发人员做起来也需要废很大的精力,就更别谈业务人员自助 商业智能BI 分析了。
讲这么多不是为了一味否定自助式商业智能BI它的作用和能力,自助式商业智能BI有它的使用场景,也确实帮助我们简化了很多的BI工作,但从专业角度出发,特别反感是部分商业智能BI 厂商以一种不负责任的方式反复向市场强化类似于这样的概念:商业智能BI 就是可视化报表、商业智能BI 不需要数据仓库建模、传统数据仓库建模很落后、商业智能BI 就是自助分析、商业智能BI 自助分析很简单、业务用户简单几天培训就可以学会并且想怎么分析就怎么分析...
从市场宣传和销售的角度来说,简化产品的复杂度和上手难度的宣传是没有问题的,有问题的是以一种错误的讲解、不专业的讲解最终误导企业接受了这些不正确的概念,并以这些不正确的概念来评估与规划 商业智能BI 项目的建设,没有充分预计到 商业智能BI 项目建设过程中可能会遇到的挑战与风险,最后导致项目的不成功与失败、反复建设。
我们在北京就有一个客户之前花了一百多万上了一套所谓的 商业智能BI 项目,项目上线了一年左右,到最后完全推不动,失败了。后续找到派可数据,我们给他们上了派可数据商业智能BI分析平台,这个项目我们连续做了好几期,客户还写了感谢信。
之前为什么推不动、项目会失败:不重视数据仓库的规划。因为他们的业务是连续的、变动的,每年的需求都是需要动态调整的,数据持续增加,分析的深度和广度都是在不断变化,没有一个好的底层数据架构来支撑,光靠 SQL 取数、建数据集出报表的形式是不可能支撑一家企业未来 3-5 年甚至更长远的业务分析需求变化的。
八、报表工具是怎么来的?
这十几年我一直在技术领域、信息化领域、商业智能BI 行业,一直没有出这个圈。做过 JAVA ( AWT、SWING、JSP、Hibernate、Spring、ibatis )、.NET ( ASP、http://ASP.NET、C#.NET )、Object-C 、JS 等等技术开发,业务软件系统平台开发。
早期前端技术很弱,AJAX 的实现也都需要手写,要实现一个表单内数据的点击编辑和修改需要自己用 JS DOM 操作。做报表基本上就是 JSP、ASP 脚本语言在前端嵌套 HTML 做循环输出,报表样式很原生很丑陋,稍微复杂一点的表格报表样式都需要用 JS 来调整。
那个时候用过的报表像 Crystal Report 水晶报表、润乾报表等等,在前端脚本语言中有标签直接可以引用,报表生成代替了大量的手写代码。早期的前后端技术是不分家的,http://ASP.NET 还稍微好一些,前端逐步有一些集成控件可以直接使用,JAVA 是真没有。上面说到的这个阶段大概在什么时候呢,2005年前后,2007年我觉得已经使用的很广泛了,老的 CSDN 上应该还能找到很多原始的报表标签帖子。
像老一批报表还有像金峰报表 Jreport、思达报表 StyleReport 等等在国内也有一定的市场。早在 2010 年之前,有些报表厂商的收入规模就已经突破了一个亿,说明基础报表这个市场还是非常不错的。
那个时候的报表定位是什么,就是纯粹的 Report 报表,通过程序从后台数据库中查询返回的数据聚合 List 再到前端脚本页面上绑定一下就生成了各种报表,实际上就是用在各个业务软件系统之中的报表展示,还远远没有到 商业智能BI分析这个层面。
并且还有大量的软件开发厂商实际上已经具备了很强的报表能力,不过这些报表能力并没有单独拿出来作为报表产品在市面上运营而已。
逐步的,随着前端技术、前端框架的完善,从传统表格技术开始到了各类柱状图、条形图、饼状图的可视化展示,到了这个阶段,报表和商业智能BI的边界越来越模糊。为什么?商业智能BI的报表展现能力也就和传统报表效果大致相当,还没有出现那种自助分析、自助拖拉拽就可以实现快速多维分析的能力。
讲这么多主要想说的是我们所看到的很多商业智能BI项目都是拿报表思维去实现的,就是 SQL 到数据集到前端展现。而真正的商业智能BI思维应该是什么呢? 多维思维、模型思维,这一点决定了一个 商业智能BI 项目的最终走向,后面会具体讲到这些点。
九、商业智能BI的本质 - 企业业务管理思维的落地
商业智能BI的本质 - 派可数据商业智能BI可视化分析平台
商业智能 BI 到底是什么?技术?产品?还是其它?我们把对于 BI 的理解再提升一个层次:商业智能 BI 是一家企业业务和管理思维的落地。这个怎么来理解呢?简单来说,就是在可视化报表上呈现的内容就是一家企业真正关注的内容,这里面有管理高层重点关注的企业经营性的分析指标,也有某具体部门的。
十、商业智能BI 和数据仓库 Data Warehouse 有什么区别和联系?
经常会碰到有人问商业智能BI和数据仓库有什么区别,实际上这个问题的背后能反映出来一些朋友对商业智能BI的理解还是有些不准确和偏差,这个问题实际上从概念上把BI和数据仓库人为的割裂了。这种情况其实也比较正常,因为大家对商业智能BI的第一印象就是各种炫酷的可视化图表、报表,再加上市面上有很多轻量的前端可视化商业智能BI分析工具,就造成大家对BI的认知就停留在可视化这部分了。
准确的来说,商业智能BI不仅仅包含前端可视化分析、报表展现的能力,更包含了底层数据仓库的建设过程。Gartner 在上世纪九十年代就已经提到了商业智能 Business Intelligence,它更多的认为:BI是一种数据类的技术解决方案,将许多来自不同企业业务系统的数据提取有分析价值的数据进行清洗、转换和加载,就是抽取Extraction、转换 Transformation、加载Loading 的ETL过程,最终合并到一个数据仓库中,按照一定的建模方式例如Inmon 的3NF 建模、Kimball 的维度建模或者两者都有的混合式架构模型,最终在这个基础上再利用合适的分析展现工具来形成各种可视化的分析报表为企业的管理决策层提供数据决策支撑。
商业智能BI - 派可数据商业智能BI可视化分析平台
所以,可以从这里能够看到数据仓库Data Warehouse 的位置是介于可视化报表和底层业务系统数据源之间的这一层,在整个商业智能BI项目解决方案中起到的是一个承上启下的作用。如果把商业智能BI比作是一个人的话,上半身特别是脸这个部分就是颜值,下半身脚踏实地吸取大地的精华,中间这部分的腰腹核心、核心力量就是数据仓库。
那大家也会问到,市面上不是有很多直接链接数据源就可以拖拉拽分析的商业智能BI工具产品吗,不也一样可以做商业智能BI分析报表吗?这种独立的、单独的面向前端的商业智能BI分析工具,他们更多的定位是部门级和个人级的商业智能BI 分析工具,对于深层次的需要复杂数据处理、集成、建模等很多场景是无法解决的。最好的方式就是底层构建一套完整的数据仓库,把很多分析模型标准化,再利用这些前端商业智能BI分析工具结合起来,这样才能真正的把前端商业智能BI分析能力给释放出来。
很多企业认为只要买一个前端商业智能BI分析工具就可以解决企业级的商业智能BI所有问题,这个看法实际上也不可行的。可能在最开始分析场景相对简单,对接数据的复杂度不是很高的情况下这类商业智能BI分析工具没有问题。但是在企业的商业智能BI项目建设有一个特点,是一个螺旋式上升的建设过程。因为对接的业务系统可能会越来越多,分析的深度和广度会越来越多,数据的复杂度也会越来越有挑战性,这个时候没有一个很好的数据仓库架构支撑,光靠前端BI分析工具基本上是无法搞定的。
数据仓库 - 派可数据商业智能BI可视化分析平台
就像去中药店抓药一样,之所以抓药很快,是因为在抓药前,别人已经把各种原生的中药材(原始数据源的数据)分门别类清理干净放好了,这样想怎么搭配药材(维度指标组合的可视化)就很快了。
这样的企业在国内有很多,也是因为对商业智能BI理解的深度不够导致了在商业智能BI项目建设上一些方向性的错误,最后s导致商业智能BI项目很难继续推进。
所以在企业中,我们需要明确我们的商业智能BI建设是面向企业级的还是个人和部门的分析工作。如果是个人数据分析师,使用这类前端商业智能BI分析工具就足够了。如果是需要构建一个企业级的商业智能BI项目,就不能只关注前端可视化分析能力这个层面,更应该关注到底层数据架构的构建,也就是数据仓库这个层面。
十一、数据仓库的建模方法论 Kimball vs Inmon 以及混合架构
数据仓库建模时商业智能BI项目建设中的重中之重,Inmon 的三范式 3NF 建模和 Kimball 的维度建模都是 商业智能BI 数据仓库建模的方法论,这两种商业智能BI建模的方式有什么区别和联系。
十二、实际开展一个 BI 项目的时候对于需求的落地的方法论
商业智能BI是一个完全需求驱动的,既然是需求就需要做访谈和调研。在商业智能BI需求进行访谈和调研之前要提前熟悉行业的业务特点,基于企业自身要熟悉他们的业务流程,以及所访谈部门的他们大概会关注的重点,都需要提前梳理一遍。在脑海里把整个业务框架给建立起来,反复的演练。
十三、什么样的企业应该要上商业智能 BI 了?
什么样的企业适合上商业智能BI?看业务基础信息化程度和日常业务管理的细致程度和颗粒度。业务基础信息化程度就是企业自身的IT业务系统基础建设,没有业务系统的支撑,做商业智能BI就缺乏数据基础;第二就是业务管理的颗粒度,企业自身业务管理程度是不是比较细致了,急需通过商业智能BI来提升业务管理、决策支撑的效率。
十四、如何高效的给高层领导做 BI 数据分析汇报总结
做完商业智能BI项目,还要考虑最终如何跟老板汇报的问题,掌握商业智能BI数据分析思维框架和汇报的五个重点:用户业务层次与范围、工作成果、计划执行复盘、问题反馈、展望规划与愿景。
商业智能BI - 派可数据商业智能BI可视化分析平台
这里只是一个简单的汇报框架,还有很多点可以往里面加。比如围绕行业讲一下行业驱动因素跟 商业智能BI 如何结合的;从企业经营管理角度,企业愿景到 CSF 到 KPI 到绩效是如何分解和重新组织的;比如财务视角下的归因分析;金字塔的管理模型;动态指标库构成原理等等都可以有所选择的进行融入和说明。
十五、商业智能BI与企业经营管理的结合度
商业智能BI分析跟企业的经营管理分析高度结合,ROE高的企业有可能是利润高像茅台、珠宝行业,有可能是周转快比如像零售行业,也有可能是融资能力比较强会利用杠杆,从ROE归因分析看行业特点。
十六、商业智能BI项目行业和业务知识的积累
做商业智能BI还必须熟悉行业和业务知识,不结合行业业务知识,商业智能BI的项目是很难落地的。商业智能BI的本质其实是企业的业务和管理思维的落地。企业的高层、业务部门的管理人员为什么要通过商业智能BI去看报表,他们看的是什么,重点关注的是什么?这些内容就是他们日常在企业中业务经营管理的重点。
数据可视化 - 派可数据商业智能BI可视化分析平台
在商业智能BI项目上看上去零零散散的报表,在实际用户眼里其实是有很强的逻辑关联性的。并且层次越高的管理人员看的商业智能BI报表内容越聚焦,看的是业务结果。一线业务部门的人员可能关注的更零散,看的是明细的业务过程数据。
所以,对于一名优秀的商业智能BI开发人员、开发顾问,不仅仅是需要在技术层面打磨,更需要在行业性知识和企业业务知识上有所沉淀。
十七、关于商业智能 BI 实时性处理的话题
商业智能BI 对数据的处理存在一定的滞后性,通常采用T+1模式,主要原因是ETL数据处理过程是需要有大量的时间损耗,通常是采用空间换时间的方式。
将以前按照商业智能BI 数据仓库分层的ETL调度设计成可按单独指标并自动寻找依赖的调度就大大的增加了对个别指标调度和准实时处理的灵活性。
离线数据与实时处理针对的业务场景不同,背后的技术方式实现不同,资源投入也不同,了解它们之间的定位差异有助于选择合适的方案以最小的资源投入达到企业既定完成商业智能BI 项目建设目标。
相关文章:

数字化时代,你应该知道的BI
我曾经看到有人在讨论过商业智能BI的部署对于企业是否有实际意义,现在市场的数据已经证明商业智能BI在商业世界中,在企业的实践中证明了自己的价值,得到了广泛的认可。 一、什么是BI 有一点可能很多人没有想到,实际上商业智能BI…...

前端jQuery ajax请求,后端node.js使用cors跨域
前言 跨域,一句话介绍: 你要请求的URL地址与当前的URL地址,协议不同、域名不同、端口不同时,就是跨域。 步入正题 前端,jQuery ajax请求 $.ajax({async: false,method: post,//URl和端口与后台匹配好,当…...

【最重要的 G 代码命令列表】
【最重要的 G 代码命令列表】1. 什么是G代码?2. 如何阅读G代码命令?3. 最重要/最常见的 G 代码命令3.1 G00 – 快速定位3.2 G01 – 线性插值3.3 G02 – 顺时针圆形插值3.4 G00、G01、G02 示例 – 手动 G 代码编程3.4 G03 – 逆时针圆形插补3.5 G20/ G21 …...

好用的公共DNS地址共享
公共DNS服务器地址大全 服务商云公共DNS服务器IP大全114DNS114.114.114.114114.114.115.115DNSPod DNS+119.29.29.29182.254.116.1162402:4e00::DNS 派 电信/移动/铁通101.226.4.6218.30.118.6DNS 派 联通123.125.81.6140.207.198.6cnnicDNS1.2.4.8210.2.4.82001:dc7:1000::1Go…...

C#:Krypton控件使用方法详解(第十三讲) ——kryptonDomainUpDown
今天介绍的Krypton控件中的kryptonDomainUpDown。下面介绍控件的外观属性和Item属性:Cursor属性:表示鼠标移动过该控件的时候,鼠标显示的形状。属性值如下图所示:Text属性:表示控件的显示文本内容,属性值为…...

Git设置SSH Key
一、git 配置 (1)打开 git 命令窗口 (2)配置用户名(填自己的姓名) git config --global user.name “xinyu.xia” (3)配置用户邮箱(填自己的邮箱࿰…...

WireShark如何抓包,各种协议(HTTP、ARP、ICMP)的过滤或分析,用WireShark实现TCP三次握手和四次挥手
WireShark一、开启WireShark的大门二、如何抓包 搜索关键字2.1 协议过滤2.2 IP过滤2.3 过滤端口2.4 过滤MAC地址2.5 过滤包长度2.6 HTTP模式过滤三、ARP协议分析四、WireShark之ICMP协议五、TCP三次握手与四次挥手5.1 TCP三次握手实验5.2 可视化看TCP三次握手5.3 TCP四次挥手5.…...

熬夜30天吃透这九大Java核心专题,我收割了3个大厂offer
这次一共收割了3个大厂offer,分别是蚂蚁金服、美团和网易,特意分享这次对我帮助非常大的宝典资料,一共涉及九大核心专题,分别是计算机网络、操作系统、MySQL、Linux、JAVA、JVM、Redis、消息队列与分布式、网站优化相关࿰…...

DMHS搭建DMDSC 2节点集群同步到单库
DMHS搭建DMDSC 2节点集群同步到单库环境介绍1 安装DMOCI1.1 关闭数据库实例服务1.2 将DMOCI 复制到源端与目的端的数据库bin目录1.3 对数据库bin 执行目录文件更改用户属组和权限2 启动源数据库服务并配置数据库实例参数2.1 使用DMCSSM启动集群实例2.2 DMDSC源其中一个节点执行…...

一条sql执行很慢可能的原因,如何优化
文章目录 sql怎么会变慢呢?1、大多数情况下很正常,偶尔很慢,则有如下原因2、这条 SQL 语句一直执行的很慢,则有如下原因:慢sql优化数据库中设置SQL慢查询分析慢查询日志慢sql如何让优化索引sql语句1、分页查询优化2、优化insert语句数据库结构优化优化器优化架构优化总结s…...

【设计模式】适配器模式和桥接模式
适配器模式 适配器模式 : 就是将一个类的接口变成客户端所期望的另一种接口,使得原本因为接口不匹配而无法一起工作的接口可以正常工作。属于结构型模式 比方说我有一个A牌子的奶瓶,然后买了个B牌子的奶嘴,不能匹配怎么办? 再买一个转换器…...

被隐藏的过程——预处理
文章目录0. 前言1. 程序的翻译环境和执行环境2. 被隐藏的过程2.1 翻译环境2.2 编译3.2.1 预编译3.2.2 编译2.2.3 汇编2.3 链接2.4 运行环境3. 预处理3.1 预定义符号3.2 #define3.2.1 #define定义标识符3.2.2 #define定义宏3.2.3 #define替换规则3.2.4 #和##3.2.5 带副作用的宏参…...

strace 用法介绍
strace 是什么 strace 是一个可用于诊断和调试的 Linux 用户空间跟踪器。我们用它来监控用户空间进程和内核的交互,比如系统调用、信号传递、进程状态变更等。 strace 作为一种动态跟踪工具,能够帮助我们高效地定位进程和服务故障。它像是一个侦探&…...

TiDB数据库架构概述
文章目录TiDB体系架构TiDB ServerStorage Cluster(存储引擎)PD cluster题目TiDB体系架构 TiDB Server Sql语句最先到达 TiDB Server集群 它是无状态的,数据并不是存储在这里面,当一个会话连接到TiDB Server集群上,sql语句发过来,…...

[深入理解SSD系列综述 闪存实战2.1.2] SLC、MLC、TLC、QLC、PLC NAND_固态硬盘闪存颗粒类型
闪存最小物理单位是 Cell, 一个Cell 是一个晶体管。 闪存是通过晶体管储存电子来表示信息的。在晶体管上加入了浮动栅贮存电子。数据是0或1取决于在硅底板上形成的浮动栅中是否有电子。有电子为0,无电子为1. SSD 根据闪存颗粒区分,固态硬盘有SLC、MLC、TLC、QLC、PLC 五种类型…...

游戏逆向之游戏技能分析
角色的当前技能列表往往都是从系统的技能库中进行筛选而组成的,而这个筛选的过程大多非常的复杂,经过的代码和临时结构体的传递也非常的多,所以在分析技能对象来源的时候常常要将OD和CE配合来使用。下面我们来分析下《天堂2》的技能列表。 首…...

汽车制造商与IT公司之间的技术合作案例
如果您对最新汽车技术感兴趣的话,您可能经常听到汽车制造商和IT公司正在合作开发技术的消息。汽车生产商为何自身不进行技术开发,而是与IT企业合作呢?因为最近随着以IT技术为基础的电动汽车等环保汽车或无人驾驶汽车等的登场和发展,汽车制造商单独进行技术开发需要花费很多时间…...

funkyheatmap | 用这个包来完美复刻Nature Biotechnology的高颜值神图吧!~
1写在前面 天气开始暖和了☀️,发现旅游的人好多啊!~🥲 不知道自己什么时候能有时间出去看看外面的世界,实在是太忙了。😷 最近用到的有个包感觉很不错,分享给大家,funkyheatmap包。ὡ…...

tomcat8调优
环境说明Jdk:1.8Tomcat: 8.5.69服务器 :2核 8G方案当调整Tomcat配置时,具体的配置方法可能会有所不同,因为它们受到许多因素的影响,例如Tomcat版本、操作系统、硬件配置等等。以下是每个建议的一些具体配置示例&#x…...

VS Code 解决 SpringBoot 项目启动时报 Failed to refresh live data from process **** 的问题
问题 SpringBoot 启动后 ,VS Code 报错 Failed to refresh live data from process ****。 现场是,SpringBoot 项目启动时,VS Code 将进行如下刷新,图片如下所示 当刷新 10 次以后,如果还是失败,则会抛出…...

[ 红队知识库 ] 各种重要文件路径
🍬 博主介绍 👨🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...

Ajax和JSON的基本用法
局部请求页面不会变化,返回的响应我们要动态获取,获取后选择数据更新区域。<body> <input id"btnLoad" type"button" value"加载"> <div id"divContent"></div> <script>//获取点…...

【项目实战】基于netty-websocket-spring-boot-starter实现WebSocket服务器长链接处理
一、背景 项目中需要建立客户端与服务端之间的长链接,首先就考虑用WebSocket,再来SpringBoot原来整合WebSocket方式并不高效,因此找到了netty-websocket-spring-boot-starter 这款脚手架,它能让我们在SpringBoot中使用Netty来开发…...

BC双驱、ChatGPT大火,AI独角兽撬开盈利大门?
配图来自Canva可画 放眼AI行业,各大AI玩家长期亏损、“钱”景堪忧。 回看过去一年,部分AI独角兽的亏损问题愈发尖锐——云从科技2022年净亏损同比扩大至8.5亿元;寒武纪2022年净亏损11.6亿元,较上年同期扩大41.4%;地平…...

1/4车、1/2车、整车悬架H2/H∞控制仿真合集
目录 前言 1. 1/4悬架系统 1.1数学模型 1.2 H2/H∞求解反馈阵阵 1.3仿真分析 2. 1/2悬架系统 2.1数学模型 2.2 H2/H∞求解反馈阵阵 2.3仿真分析 3. 整车悬架系统 3.1数学模型 整车7自由度主动悬架数学模型 3.2 H2/H∞求解反馈阵阵 3.3仿真分析 4.总结 参考文献 …...

Git使用教程、命令
Git使用教程、命令 基本配置 git的配置文件位置: win: c:\users\<userName>\.gitconfig linux: /home/<userName>/.gitconfig # 个人/etc/gitconfig # 系统全局# 修改git init时的默认分支为master&#x…...

《c++ primer笔记》第九章 顺序容器
前言 知识点很多,这里只记录遗忘的。从这章开始会对前面章节的内容进行一个扩充,如果以前的忘了读起来会有点吃力。总的来说,本章节难度不大。 文章目录一、概述二、容器库概览2.1容器定义和初始化2.2赋值三、顺序容器操作3.1添加元素3.2删除…...

QML动画(弹动和翻转效果)
Flickable(弹动) QML中提供了一个Flickable元素,可以将其子项设置在一个可以拖拽和弹动的界面上,使得子项目的视图可以滚动。在传统的用户界面中,可以使用标准控件(如滚动条和箭头按钮)滚动视图…...

GPS启动方式、定位速度、定位精度介绍
前面文章介绍了GPS定位基础知识 GPS定位知识介绍 (qq.com) 本文主要介绍GPS启动方式。 定位过程中最重要的辅助信息是时间、星历、位置。 根据辅助信息不同,...

深度学习零基础学习之路——第五章 个人数据集的制作
Python深度学习入门 第一章 Python深度学习入门之环境软件配置 第二章 Python深度学习入门之数据处理Dataset的使用 第三章 数据可视化TensorBoard和TochVision的使用 第四章 UNet-Family中Unet、Unet和Unet3的简介 第五章 个人数据集的制作 深度学习数据集的制作Python深度学…...