当前位置: 首页 > news >正文

STEEL ——首个利用 LLM 检测假新闻的框架算法解析

1.概述

近年来,假新闻的泛滥确实对政治、经济和整个社会产生了深远的负面影响。为了解决这一问题,人们开发了各种假新闻检测方法,这些方法试图通过分析新闻内容、来源和传播方式来识别虚假信息。

然而,正如你所提到的,现有的假新闻检测方法存在一些局限性。其中一个主要问题是它们通常依赖于静态资料库,如维基百科,这导致它们在处理新出现的新闻和索赔时存在困难,因为这些资料库可能没有最新的信息。

为了克服这些挑战,研究人员开始探索利用大型语言模型(LLM)的能力。LLMs因其在自然语言处理任务中的卓越表现而受到关注,它们能够理解、推理并生成语言,这为假新闻检测提供了新的可能性。

尽管如此,基于LLM的解决方案也面临着一些挑战,例如信息可能过时,以及在检索低质量信息和处理长上下文时的能力受限。

在这种背景下,你提到的STEEL框架是一个创新的尝试,它利用了LLMs的推理能力来进行自动信息检索,以增强假新闻的检测能力。STEEL框架可能是第一个尝试将LLMs的推理和生成能力与信息检索相结合的系统,以提高假新闻检测的准确性和效率。

论文地址:https://arxiv.org/pdf/2403.09747.pdf

2.STEEL 算法架构

LLM(Large Language Models,大型语言模型)确实在多个领域展现出了卓越的能力,包括自然语言理解、文本生成、翻译、问答系统等。在假新闻检测领域,它们也被证明是有用的工具。

**RAG(Retrieval-Augmented Generation,检索增强生成)**是一种结合了检索和生成的方法,它允许模型从外部知识库中检索相关信息,并将这些信息整合到生成的输出中。这种方法特别适用于假新闻检测,因为它可以提供额外的上下文和证据来帮助评估新闻的真实性。

然而,这种方法也面临一些挑战:

  1. 依赖有限数据源的局限性:如果检索到的信息不全面或有偏差,可能会影响假新闻检测的准确性。
  2. 在瞬息万变的新闻环境中进行实时更新的困难:新闻内容不断更新,而模型需要能够快速适应这些变化,以提供准确的检测。

针对这些挑战,本文提出的**STEEL(Strategic Extraction and Evaluation of Evidence with Large Language models,用大语言模型增强的战略检索)**框架是一个创新的解决方案。STEEL基于多轮LLM的RAG框架,它通过以下方式解决上述难题:

  • 搜索模块:STEEL可能包含一个专门的搜索模块,用于从互联网上检索与新闻相关的最新信息。
  • 搜索引擎:通过直接与搜索引擎集成,STEEL能够访问更广泛的信息源,并可能实现实时更新,以适应新闻环境的快速变化。

下图显示了算法架构:

如图所示,STEEL 主要包括两个主要模块,即检索模块和****推理模块,这两个模块被整合成一个综合的再研究机制框架。

检索模块

检索模块通过搜索引擎搜索可确定为假新闻的证据来源,并根据相似性对检索到的文件和输入信息(即 “权利要求”)进行排序。
该源代码实施了基本的过滤机制,并根据现有研究使用 1044 个已知假新闻网站的列表作为过滤器。

推理模块

从网络上检索到的可确定为假新闻的信息源被汇总为提示信息,并提供给 LLM 进行推理。
然后,LLM 会根据给定的信息源进行评估,包括决定是否有必要重新搜索,并输出true(真)、false(假)或 NEI(信息不足 = 信息不够)的结果。

再搜索机制

如果上述 "推理 "模块产生了下图所示的 “NEI”,就会判定没有足够的信息来确定新闻是假的,并重新进行调查。

重新审查首先会合并在初始搜索中收集到的资料来源,并将其添加到名为**"既定证据 “的资料库中以供参考。
接下来,会设置
"更新查询**”,目的是检索更多相关信息,并将新信息添加到查询中。
其机制是,通过重复这种方法,模型逐渐建立起判断假新闻的证据体系,并提高模型辨别新闻真伪的能力。

3. 实验

为了评估 STEEL 的性能,我们在三个真实世界的数据集上进行了广泛的实验,其中包括两个英文数据集LIAR 和****PolitiFact,以及一个中文数据集CHEF。(这些数据集分为真实新闻和虚假新闻两类)。

此外,本实验共使用了 11 个模型,包括 7 个基于证据的方法和 4 个基于 LLM 的方法,如下所示。

  1. 证据基础(G1):七个: DeClarE、HANEHIAN、MAC、GETMUSER****和 ReRead
  2. 基于 LLM(G2): GPT-3.5-Turbo**、Vicuna-7B、WEBGLM****和 ProgramFC**。

假新闻检测是一个二元分类问题,以F1****、精确度、召回率、F1 宏****和 F1 微作为评估标准。

实验结果如下表所示。

该表证实,**在所有方法中,STEEL 的得分最高,在三个真实世界数据集中,F1 宏观和 F1 微观得分都提高了 5%**以上。

从这个实验中可以看出,STEEL 在检测假新闻方面非常有效,在推理和准确性方面都有显著优势。

4. 总结

STEEL框架在假新闻检测方面取得了积极的进展,并且通过大规模实验显示出其性能优于现有的假新闻检测方法。这是一个重要的成就,因为它表明利用大型语言模型(LLMs)进行自动信息检索和推理是检测假新闻的有效途径。

然而,文章也指出了STEEL框架目前的一些局限性,特别是它目前仅涉及文本数据。在假新闻的传播中,文本只是众多媒介之一。为了更全面地识别和分析假新闻,需要考虑以下方面:

  1. 多模态信息的整合:假新闻可能包含图像、视频和音频等多种媒介形式。扩展STEEL框架,使其能够处理和分析这些非文本数据,将有助于提高检测的准确性和全面性。

  2. 上下文理解:图像、视频和音频中的视觉和听觉线索可以提供额外的上下文信息,有助于理解新闻内容的真实性。

  3. 跨模态分析:通过跨模态分析,可以更好地理解文本内容与图像、视频和音频之间的关系,从而提高假新闻检测的准确性。

  4. 实时更新和适应性:随着技术的不断进步,STEEL框架需要能够适应新的媒介形式和传播方式,以保持其有效性。

  5. 用户交互和反馈:用户反馈可以作为评估新闻真实性的一个额外维度,帮助模型学习和改进。

通过解决这些挑战,STEEL框架不仅能够提高假新闻检测的准确性,还能够增强新闻的整体可靠性。这将有助于构建一个更加健康和可信的信息生态系统,减少假新闻对社会的负面影响。未来的工作可能会集中在如何将STEEL框架扩展到多模态数据的处理,以及如何通过用户交互和反馈来进一步优化模型的性能。

相关文章:

STEEL ——首个利用 LLM 检测假新闻的框架算法解析

1.概述 近年来,假新闻的泛滥确实对政治、经济和整个社会产生了深远的负面影响。为了解决这一问题,人们开发了各种假新闻检测方法,这些方法试图通过分析新闻内容、来源和传播方式来识别虚假信息。 然而,正如你所提到的&#xff0…...

【AREngine BUG 解决方法】无法获取有效的相机图像尺寸

近期拿了一台 华为mate20 Pro的手机,在运行AR示例的过程中出现了黑屏。 问题排查 SDK版本:com.huawei.hms:arenginesdk:3.7.0.3 定位 经排查,发现(ARCamera对象的相机内参) getImageDimensions()返回的图像尺寸的width和height都为0。 这…...

植物大战僵尸杂交版2.0.88最新版+防闪退工具V2+修改工具+高清工具

植物大战僵尸杂交版,不仅继承原作的经典玩法,而且引入了全新的植物融合玩法,将各式各样的植物进行巧妙的杂交,孕育出前所未有、功能各异的全新植物。 创新的杂交合成系统 游戏引入了创新的杂交合成系统,让玩家可以将不…...

面试题:说说你对 JS 中 this 指向的了解

面试题:说说你对 JS 中 this 指向的了解 JS 的代码执行环境分为严格模式和非严格模式,可以通过 use strict 打开严格模式,此时 JS 在语法检查上会更加严格。要讨论 JS 中的 this 指向问题,也要分为严格模式和非严格模式进行讨论。…...

分享一个实用的MySQL一键巡检脚本

今日分享一个实用的MySQL一键巡检脚本,脚本内容还不是很完善,后续会继续进行优化。大家可以先在测试环境执行,确认执行没问题后可以在生产环境进行操作,问题的可以私信我。 MySQL一键巡检脚本的作用主要是帮助数据库管理员快速且…...

【动手学深度学习】卷积神经网络CNN的研究详情

目录 🌊1. 研究目的 🌊2. 研究准备 🌊3. 研究内容 🌍3.1 卷积神经网络 🌍3.2 练习 🌊4. 研究体会 🌊1. 研究目的 特征提取和模式识别:CNN 在计算机视觉领域被广泛用于提取图像…...

2024年数字化经济与智慧金融国际会议(ICDESF 2024)

2024 International Conference on Digital Economy and Smart Finance 【1】大会信息 大会时间:2024-07-22 大会地点:中国成都 截稿时间:2024-07-10(以官网为准) 审稿通知:投稿后2-3日内通知 会议官网:h…...

kafka-消费者服务搭建配置简单消费(SpringBoot整合Kafka)

文章目录 1、使用efak 创建 主题 my_topic1 并建立6个分区并给每个分区建立3个副本2、创建生产者发送消息3、application.yml配置4、创建消费者监听器5、创建SpringBoot启动类6、屏蔽 kafka debug 日志 logback.xml7、引入spring-kafka依赖 1、使用efak 创建 主题 my_topic1 并…...

C++STL---list常见用法

C STL中的list list是C标准模板库&#xff08;STL&#xff09;中的一个序列容器&#xff0c;它实现了一个双向链表。与vector和deque相比&#xff0c;list支持快速的任意位置插入和删除操作&#xff0c;但不支持快速随机访问。 基本操作 创建和初始化 #include <list> …...

MQTT.FX的使用

背景 在如今物联网的时代下&#xff0c;诞生了许多的物联网产品&#xff0c;这些产品通过BLE、WIFI、4G等各种各样的通信方式讲数据传输到各种各样的平台。 除了各个公司私有的云平台外&#xff0c;更多的初学者会接触到腾讯云、阿里云之类的平台。设备接入方式也有着多种多样…...

SRS、ZLMediakit音视频流媒体服务器

SRS、ZLMediakit都是做为webrtc的SFU&#xff08;selective forward unit&#xff09; WebRTC 开发实践&#xff1a;为什么你需要 SFU 服务器 https://mp.weixin.qq.com/s?__bizMzAxNTc1MjM0Mw&mid2652213442&idx1&sn33f0393a2dbc2b6a39c613bb238ec145&chksm…...

大模型Prompt-Tuning技术进阶

LLM的Prompt-Tuning主流方法 面向超大规模模型的Prompt-Tuning 近两年来&#xff0c;随之Prompt-Tuning技术的发展&#xff0c;有诸多工作发现&#xff0c;对于超过10亿参数量的模型来说&#xff0c;Prompt-Tuning所带来的增益远远高于标准的Fine-tuning&#xff0c;小样本甚至…...

统一响应,自定义校验器,自定义异常,统一异常处理器

文章目录 1.基本准备&#xff08;构建一个SpringBoot模块&#xff09;1.在A_universal_solution模块下创建新的子模块unified-processing2.pom.xml引入基本依赖3.编写springboot启动类4.启动测试 2.统一响应处理1.首先定义一个响应枚举类 RespBeanEnum.java 每个枚举对象都有co…...

完整状态码面试背

{"100": "继续","101": "切换协议","102": "处理中","103": "早期提示","200": "成功","201": "已创建","202": "已接受",&qu…...

QT+FFmpeg+Windows开发环境搭建(加薪点)

01、Windows 环境搭建 FFMPEG官网:http://ffmpeg.org/ 02、下载4.2.1版本源码 源码:https://ffmpeg.org/releases/ffmpeg-4.2.1.tar.bz2 03、下载4.2.1编译好的文件 下载已经编译好的FFMPEG)(迅雷下载很快) 网址:https://ffmpeg.zeranoe.com/builds/ 32位下载地址:(迅雷…...

Linux 主机一键安全整改策略

为防止linux主机被恶意攻击&#xff0c;和受到攻击后能更快定位到源头&#xff0c;需要对linux主机做一些参数配置。 比如禁用root的远程登录、用户多次密码验证失败后被锁、禁止系统账号交互式登录等等。 下面是linux主机安全整改的一些简单介绍&#xff0c;最后会通过脚本一…...

Hot100——二叉树

树的定义&#xff1a; public static class TreeNode{int val;TreeNode left;TreeNode right;TreeNode(){};TreeNode(int val){ this.val val; };TreeNode(int val, TreeNode left, TreeNode right){this.val val;this.left left;this.right right;}} 深度优先遍历&#x…...

C++ static_cast、dynamic_cast、const_cast 和 reinterpret_cast 用处和区别

在 C 中&#xff0c;static_cast、dynamic_cast、const_cast 和 reinterpret_cast 是四种类型转换运算符&#xff0c;它们各自有不同的用途和行为&#xff1a; static_cast 用于编译时已知类型的转换&#xff0c;如基本数据类型转换、派生类到基类的转换、指针和引用的转换等…...

三十七、openlayers官网示例Earthquakes Heatmap解析——在地图上加载热力图

官网demo地址&#xff1a; Earthquakes Heatmap 这篇主要介绍了热力图HeatmapLayer HeatmapLayer 是一个用于在地图上显示热力图的图层类型&#xff0c;通常用于表示地理数据中的密度或强度。例如&#xff0c;它可以用来显示地震、人口密度或其他空间数据的热点区域。在这个示…...

curl 92 HTTP/2 stream 5 was not closed cleanly: CANCEL

source ~/.bash_profile flutter clean Command exited with code 128: git fetch --tags Standard error: 错误&#xff1a;RPC 失败。curl 92 HTTP/2 stream 5 was not closed cleanly: CANCEL (err 8) 错误&#xff1a;预期仍然需要 2737 个字节的正文 fetch-pack: unexpec…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...