大型网站制作需要多少钱/百度推广需要什么条件
卷积层[Conv]:
卷积CNN是我们最常使用的,但是有时候需要观察他的输出前后的差异,这里描述下计算方式,具体如下:
图片大小:WxHxD W:宽 H:高 D:通道(RGB) 例:320x320x3
卷积核:NxNx3 卷积核大小 后面的3是和图片的通道对应,如果图片是灰度的那么就是1
卷积核个数:C
步长:S 每次一卷积的时候跨越的步长
填充:P 外网填充多少行和列,一般是图片保留特征或者是维持图片大小
公式计算:
输出数据的高度:OH = (H - N + 2P) / S + 1
输出数据的宽度:OW = (W - N + 2P) / S + 1
输出数据的深度:OD = 卷积核的个数C
*如果输出数据的尺寸不是整数,会对输出数据进行四舍五入或者向下取整等操作。
例子:
输入数据为:3x320x320
我们这里是BGR的图片,一般cv默认处理就是BGR图片,通道是3,宽和高都是320,也可以理解为三张320x320的图片,方便神经网络的处理
卷积参数:卷积个数:16,卷积核:3x4x4 (由于通道是3,卷积核宽和高都是4,当然卷积核默认都是奇数,这里测试写了个偶数4,选择偶数会导致特征偏移不建议)、步长:3 填充:2
根据公式计算:
输出图片宽:((320 - 4 + 2x2)/ 3 )+ 1 = 107.6666 ≈ 107(选择向下取整,也可以四舍五入,看算法)
输出图片高:((320 - 4 + 2x2)/ 3 )+ 1 = 107.6666 ≈ 107(选择向下取整,也可以四舍五入,看算法)
通道数:16(直接为卷积核个数)
输出的数据为:16x107x107
池化层[Pool]:
池化也是提取特征,可以达到快速缩小特征,比如最大池化、平均池化
里面包含的也是 滤波器 步长
图片大小:WxHxD W:宽 H:高 D:通道(RGB) 例:320x320x3
滤波器:NxN 滤波器的宽高
公式:(和卷积差不多没有填充)
输出数据的高度:OH = (H - N ) / S + 1
输出数据的宽度:OW = (W - N ) / S + 1
例子
图片输入:3x320x320
池化层:3x3 步长 2
根据公式计算:
输出图片宽:((320 - 3)/ 2 )+ 1 = 159.5≈ 159(选择向下取整,也可以四舍五入,看算法)
输出图片高:((320 - 3)/ 2 )+ 1 = 159.5≈ 159(选择向下取整,也可以四舍五入,看算法)
通道数:3
输出数据为:3x159x159
膨胀卷积【Conv】
卷积的一种,在卷积核中插入空洞(dilation)来扩大感受野,从而捕捉更广泛的上下文信息。膨胀卷积通常用于处理具有较大空间范围的输入数据,(个人理解,其实就是特征图太紧凑了,比如鼻子嘴巴都黏到一起了,通过添加一些空白值把鼻子和嘴巴隔开些,更好的观察分析,如果离得太近可能在某次池化或者卷积就把特征卷没了),用途如图像分割、语义分割,包含膨胀卷积、扩张卷积、空洞卷积。
根常规的卷积比,增加了一个膨胀因子R,具体如下
图片大小:WxHxD W:宽 H:高 D:通道(RGB) 例:320x320x3
卷积核:NxNx3 卷积核大小 后面的3是和图片的通道对应,如果图片是灰度的那么就是1
卷积核个数:C
膨胀因子:R (增加视野的参数)
步长:S 每次一卷积的时候跨越的步长
填充:P 外网填充多少行和列,一般是图片保留特征或者是维持图片大小
首先需要根据膨胀卷积计算出感受野,其实就是相当正常卷积的卷积核宽高(N)
感受野假设为D,感受野大小 = (卷积核大小 - 1) * 膨胀率 + 1
感受野D的计算公式:D = (N-1)*(R-1) +N
输出数据的高度:OH = (H - D + 2P) / S + 1
输出数据的宽度:OW = (W - D + 2P) / S + 1
输出数据的深度:OD = 卷积核的个数C
例子
输入数据为:3x320x320
我们这里是BGR的图片,一般cv默认处理就是BGR图片,通道是3,宽和高都是320,也可以理解为三张320x320的图片,方便神经网络的处理
卷积参数:卷积个数:16,卷积核:3x4x4 (由于通道是3,卷积核宽和高都是4,当然卷积核默认都是奇数,这里测试写了个偶数4,选择偶数会导致特征偏移不建议)、膨胀因子为2(1为默认卷积)、步长:3 填充:2
根据公式计算:
感受野计算:D= (4-1)*(2-1)+4 =7
输出图片宽:((320 - 7 + 2x2)/ 3 )+ 1 = 106.6666 ≈ 106(选择向下取整,也可以四舍五入,看算法)
输出图片高:((320 - 7 + 2x2)/ 3 )+ 1 = 106.6666 ≈ 106(选择向下取整,也可以四舍五入,看算法)
通道数:16(直接为卷积核个数)
输出的数据为:16x106x106
相关文章:

卷积池化尺寸计算公式
卷积层[Conv]: 卷积CNN是我们最常使用的,但是有时候需要观察他的输出前后的差异,这里描述下计算方式,具体如下: 图片大小:WxHxD W:宽 H:高 D:通道(RGB) 例:320x320x3 卷积核&…...

前端框架原理自测题:根据 JSX / Vue 模板写出 render 函数 / VNode
JSX <div className"container"><p onClick{onClick} data-name"p1">hello <b>{name}</b></p><img src{imgSrc}/><MyComponent title{title}></MyComponent> </div>Vue 模板 <div class"co…...

RabbitMQ启动报错:Error during startup: {error, {schema_integrity_check_failed,
报错信息如下: Error during startup: {error,{schema_integrity_check_failed,[{table_attributes_mismatch,rabbit_user,[username,password_hash,tags,hashing_algorithm,limits],[username,password_hash,tags,hashing_algorithm]},{table_attributes_mismatch…...

操作系统入门系列-MIT6.828(操作系统工程)学习笔记(三)---- xv6初探与实验一(Lab: Xv6 and Unix utilities)
系列文章目录 操作系统入门系列-MIT6.S081(操作系统)学习笔记(一)---- 操作系统介绍与接口示例 操作系统入门系列-MIT6.828(操作系统工程)学习笔记(二)----课程实验环境搭建&#x…...

Java核心: 为图片生成水印
今天干了一件特别不务正业的事,做了一个小程序用来给图片添加水印。事情的起因是需要将自己的身份证照片分享给别人,手边并没有一个趁手的工具来生成图片水印。很多APP提供了水印的功能,但会把我的图片上传到他们的服务器,身份证太…...

Spark MLlib 机器学习详解
目录 🍉引言 🍉Spark MLlib 简介 🍈 主要特点 🍈常见应用场景 🍉安装与配置 🍉数据处理与准备 🍈加载数据 🍈数据预处理 🍉分类模型 🍈逻辑回归 &a…...

MySQL报ERROR 2002 (HY000)解决
今天在连接客户服务器时MySQL的时候报: ERROR 2002 (HY000): Can’t connect to local MySQL server through socket ‘/tmp/mysql/mysql.sock’ (2) [rootXXX ~]# mysql -uroot -p Enter password: ERROR 2002 (HY000): Can’t connect to local MySQL server through socket…...

【校招】【社招】字节跳动UG营销算法工程师招聘
【校招】【社招】字节跳动UG营销算法工程师招聘 需要营销、广告、搜索、推荐等领域的人才加入 岗位简介 字节跳动增长智能-激励中台团队负责公司国内字节所有主要App(包含但不仅限于抖音/抖音极速版/抖音火山版/今日头条/头条极速版/番茄小说/番茄畅听/西瓜视频&…...

Go实战 | 使用Go-Fiber采用分层架构搭建一个简单的Web服务
前言 📢博客主页:程序源⠀-CSDN博客 📢欢迎点赞👍收藏⭐留言📝如有错误敬请指正! 一、环境准备、示例介绍 Go语言安装,GoLand编辑器 这个示例实现了一个简单的待办事项(todo…...

Web自动化测试框架+PO模式分层实战(超细整理)
前言 PO模式 在UI级的自动化测试中,对象设计模式表示测试正在交互的web应用,程序用户界面中的一个区域,这个是减少了代码的重复,也就是说,如果用户界面发生了改变,只需要在一个地方修改程序就可以了。 优…...

光猫、路由器的路由模式、桥接模式、拨号上网
下面提到的路由器都是家用路由器 一、联网条件 1.每台电脑、路由器、光猫想要上网,都必须有ip地址。 2.电脑获取ip 可以设置静态ip 或 向DHCP服务器(集成在路由器上) 请求ip 电话线上网时期,猫只负责模拟信号和数字信号的转换,电脑需要使…...

iOS--工厂设计模式
iOS--工厂设计模式 设计模式的概念和意义类族模式UIButton作为类族模式的例子总结 三种工厂设计模式简单工厂模式(Simple Factory Pattern):代码实例 工厂方法模式(Factory Method Pattern):代码实例 抽象工…...

[Python]用Qt6和Pillow实现截图小工具
本文章主要讲述的内容是,使用python语言借助PyQt6和Pillow库进行简单截图工具的开发,含义一个简单的范围裁剪和软件界面。 主要解决的问题是,在高DPI显示屏下,坐标点的偏差导致QWidget显示图片不全、剪裁范围偏差问题。 适合有一点…...

Podman和Docker的区别
Podman 和 Docker 都是用于容器化的工具,但它们在架构、安全性、容器编排以及一些设计理念上有显著的区别: 架构设计: Docker 使用客户端-服务器(C/S)架构,包含一个名为 dockerd 的守护进程,该进程以 root …...

Go微服务: 分布式Cap定理和Base理论
分布式中的Cap定理 CAP理论 C: 一致性,是站在分布式的角度,要么读取到数据,要么读取失败,比如数据库主从,同步时的时候加锁,同步完成才能读到同步的数据,同步完成,才返回数据给程序&…...

Mysql学习(四)——SQL通用语法之DQL
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 DQLDQL-语法基本查询条件查询聚合函数分组查询排序查询分页查询 DQL DQL数据查询语言,用来查询数据库中表的记录。 DQL-语法 select 字段列表 from 表…...

【ARFoundation自学05】人脸追踪(AR Face manager)实现
1. 修改摄像机朝向渲染方式-选中user 这个方式就会调用前置摄像头 2 创建 AR Session、XR Origin,然后在XR Origin上面添加组件 注意:XR Origin 老版本仍然叫 AR Session Origin 接下来在XR Origin上面添加AR Face Manager组件,如下图&am…...

Vulnhub-DC-2
靶机IP:192.168.20.135 网络有问题的可以看下搭建Vulnhub靶机网络问题(获取不到IP) kaliIP:192.168.20.128 扫描靶机端口及服务版本 发现开放了80和7744端口 并且是wordpress建站 dirsearch扫描目录 访问前端界面,发现存在重定向 在hosts文件中增加192.168.2…...

VNC server ubuntu20 配置
介绍 最近想使用实验室的4卡服务器跑一些深度学习实验,因为跑的是三维建图实验,需要配上可视化界面,本来自带的IPMI可以可视化,但分辨率固定在640*480,看起来很别扭,就捣鼓服务器远程可视化访问了两天&…...

c++--priority_queue和仿函数
目录 1.priority_queue 实现: 2.仿函数 priority_queue仿函数 实现代码 1.priority_queue 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的,其实就是个堆,默认是大根堆。…...

Harmony os Next——关系型数据库relationalStore.RdbStore的使用
Harmony os Next——关系型数据库relationalStore.RdbStore的使用 描述数据库的使用建表定义表信息创建数据库表 创建数据库操作对象增更新查询删数据库的初始化 描述 本文通过存储一个简单的用户信息到数据库中为例,进行阐述relationalStore.RdbStore数据库的CRUD…...

快手直播限流怎么办?
直播限流怎么办?这期把直播间限流的所有原因都讲得明明白白,如果你直播间昨天还播的好好的,今天突然间贴地飞行,按照这个思路框架去排查,准没问题。 第一件事情肯定是排查一下评分问题, 信用分、口碑分、…...

【MySQL】数据库入门基础
文章目录 一、数据库的概念1. 什么是数据库2. 主流数据库3. mysql和mysqld的区别 二、MySQL基本使用1. 安装MySQL服务器在 CentOS 上安装 MySQL 服务器在 Ubuntu 上安装 MySQL 服务器验证安装 2. 服务器管理启动服务器查看服务器连接服务器停止服务器重启服务器 3. 服务器&…...

cannot allocate memory in static TLS block
如果不是内存太小,那是不是因为glibc太旧呢? 考虑 glibc 2.22 以后的版本。 glibc-2.22 中加入了如下commit:f8aeae347377f3dfa8cbadde057adf1827fb1d44 https://sourceware.org/git/?pglibc.git;acommit;hf8aeae347377f3dfa8cbadde057adf1…...

Leetcode 654:最大二叉树
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回 nums 构建的 最大二叉树…...

uniapp小程序src引用服务器图片时全局变量与图片路径拼接
理论上,应该在main.js中定义一个全局变量,然后在页面的<image>标签上的是src直接使用即可 main.js 页面上 看上去挺靠谱的,实际上小程序后台会报一个错 很明显这种方式小程序是不认的,这就头疼了,还想过另外一个…...

比较PWM调光和无极调光
在比较PWM调光和无极调光哪种方式更节能时,需要综合考虑多个因素,如灯具类型、光源效率、调光范围以及使用场景等。 PWM调光系统通过调节LED驱动电流的占空比来实现LED亮度的调节,具有高精度、高稳定性、无闪烁现象以及适用范围广等优点。其节…...

【高校科研前沿】新疆生地所陈亚宁研究员团队在GeoSus发文:在1.5°C和2°C全球升温情景下,中亚地区暴露于极端降水的人口增加
目录 文章简介 1.研究内容 2.相关图件 3.文章引用 文章简介 论文名称:Increased population exposures to extreme precipitation in Central Asia under 1.5 ◦C and 2 ◦C global warming scenarios(在1.5C和2C全球变暖情景下,中亚地区…...

使用 OKhttp3 实现 智普AI ChatGLM HTTP 调用(SSE、异步、同步)
SSE 调用 SSE(Sever-Sent Event),就是浏览器向服务器发送一个HTTP请求,保持长连接,服务器不断单向地向浏览器推送“信息”(message),这么做是为了节约网络资源,不用一直…...

智慧校园教学模式的崛起:优化学习体验
在当今数字化时代,智慧校园教学模式正在成为教育界的热门话题。随着科技的不断发展,传统的教学方式已经无法满足现代学生的需求。智慧校园教学模式以其灵活性、互动性和个性化的特点,正逐渐改变着教育的面貌。 首先,智慧校园教学模…...