Pytorch常用函数用法归纳:创建tensor张量
1.torch.arange()
(1)函数原型
torch.arange(start,end,step,*,out,dtype,layout=,device,requires_grad)
(2)参数说明:
| 参数名称 | 参数类型 | 参数说明 |
| start | Number | 起始值,默认值为0 |
| end | Number | 结束值,取不到,为开区间 |
| step | Number | 步长值,默认为1 |
| out | Tensor | 输出的张量,,表明创建后tensor赋予哪个变量,通常情况下不会设置该参数 |
| dtype | torch.dtype | 期望返回的张量的数据类型,如果是None,则使用全局默认值,如果未给出dtype,则从其他输入参数推断数据类型,如果start、end或stop中的任何一个是浮点数,则dtype被推断为默认值,否则被推断为torch.int64 |
| layout | torch.layout | 返回张量的期望 layout,默认值为torch.strided |
| device | torch.device | 返回张量的期望设备。如果是默认值None,则使用当前设备作为默认张量类型,对于CPU类型的张量,则device是CPU;若是CUDA 类型的张量,则device是当前的CUDA 设备 |
| requires_grad | bool | autograd是否记录返回张量上的梯度。默认值为False,表示不记录 |
(3)函数功能:
返回大小为[(end-start)/step]的一维张量,其值为区间[start,end)中给定步长为step的等间隔取值
2.torch.range()
(1)函数原型:
torch.range(start,end,step,*,out,dtype,layout,device=None,requires_grad)
(2)参数说明:
| 参数名称 | 参数类型 | 参数说明 |
| start | Number | 起始值,默认值为0 |
| end | Number | 结束值,可以取到,为闭区间 |
| step | Number | 步长值,默认为1 |
| out | Tensor | 输出的张量,表明创建后tensor赋予哪个变量,通常情况下不会设置该参数 |
| dtype | torch.dtype | 期望返回的张量的数据类型,如果是None,则使用全局默认值;如果未给出dtype,则从其他输入参数推断数据类型;如果start、end或stop中的任何一个是浮点数,则dtype被推断为默认值;否则被推断为torch.int64 |
| layout | torch.layout | 返回张量的期望layout,默认值为torch.strided,对性能影响不大 |
| device | torch.device | 返回张量的设备。默认值None表示使用当前设备作为默认张量类型;对于CPU类型的张量则device是CPU;若是CUDA 类型的张量则device是当前的CUDA 设备 |
| requires_grad | bool | autograd是否记录返回张量上的梯度。默认值为False,表示不记录 |
(3)函数功能:
返回大小为[(end-start)/step]的一维张量,其值为区间[start,end]中给定步长为step的等间隔取值
3.生成随机数组成的Tensor张量:
(1)函数原型:
1.torch.rand(*size,generator,out,dtype,layout,device,requires_grad)
2.torch.randn(*size,generator,out,dtype,layout,device,requires_grad)
3.torch.randint(low,high,*size,generator,out,dtype,layout,device,requires_grad)
4.torch.randperm(n,generator,out,dtype,layout,device,requires_grad)
5.torch.normal(mean,std,size,generator,out)
(2)参数说明:
| 参数名称 | 参数类型 | 参数说明 |
| size | int/list/tuple | 生成tensor的维度大小,可以是int类型的数或者是一个由int类型数组成的list或tuple,若为int则表示此时生成的tensor是一维的 |
| generator | torch.Generator,optional | 用于控制生成随机数的种子,是可选参数 |
| low | int,optional | 生成的随机tensor所属整数区间的下界,默认值为0 |
| high | int | 生成的随机tensor所属整数区间的上界 |
| n | int | 生成随机整数排列的区间上界,即这些整数排列中最大值+1 |
| mean | Tensor | 生成的随机tensor服从的正态分布的均值向量 |
| std | Tensor | 生成的随机tensor数服从的正态分布的标准差向量 |
| out | Tensor | 输出的张量,表明创建后tensor赋予哪个变量,通常情况下不会设置该参数 |
| dtype | torch.dtype | 期望返回的张量的数据类型,对于torch.randint()和torch.randperm()来说默认值为torch.int64,而对于其他函数如果是None则使用全局默认值 |
| layout | torch.layout | 返回张量的期望layout,默认值为torch.strided,对性能影响不大 |
| device | torch.device | 返回张量的设备。默认值None表示使用当前设备作为默认张量类型;对于CPU类型的张量则device是CPU;若是CUDA 类型的张量则device是当前的CUDA 设备 |
| requires_grad | bool | autograd是否记录返回张量上的梯度。默认值为False表示不记录 |
(3)函数功能:
1.生成由[0, 1)之间均匀分布的随机数组成的给定size大小的tensor张量;
2.生成由从标准正态分布(均值为0,标准差为1)中采样的随机数组成的指定size大小的tensor张量;
3.生成由指定范围[low,high)内的随机整数组成的指定size大小的tensor张量
4.生成一个从[0,n)的随机整数排列的tensor张量
5.生成由服从给定均值mean和标准差std的正态分布的随机数组成的指定size大小的tensor张量;
size参数不是必须的,当省略size参数时生成的tensor大小由mean和std决定
4.生成由固定值组成的Tensor张量
(1)函数原型:
1.torch.ones(*size,out,dtype,layout,device,requires_grad)
2.torch.ones_like(input,dtype,layout,device,requires_grad)
3.torch.zeros(*size,out,dtype,layout,device,requires_grad)
4.torch.zeros_like(input,dtype,layout,device,requires_grad)
5.torch.fill(*size,fill_value,out,dtype,layout,device,requires_grad)
6.torch.eye(n,m,out,dtype,layout,device,requires_grad)
7.torch.empty(*size,out,dtype,layout,device,requires_grad)
8.torch.empty_like(input,out,dtype,layout,device,requires_grad)
(2)参数说明:
| 参数名称 | 参数类型 | 参数说明 |
| size | int/list/tuple | 生成tensor的维度大小,可以是int类型的数或者是一个由int类型数组成的list或tuple,若为int则表示此时生成的tensor是一维的 |
| input | torch.Tensor | 输入张量,新张量的大小将与此张量相同 |
| dtype | torch.dtype | 期望返回的张量的数据类型; 对于torch.zeros_like()和torch.ones_like()来说默认值为None,如果是None则使用和张量input一致的类型;而对其他函数来说如果为None使用全局默认类型 |
| out | Tensor | 输出的张量,表明创建后tensor赋予哪个变量,通常情况下不会设置该参数 |
| layout | torch.layout | 返回张量的期望layout,默认值为torch.strided,对性能影响不大 |
| device | torch.device | 返回张量的设备,默认值None表示使用当前设备作为默认张量类型; 对于CPU类型的张量则device是CPU;若是CUDA 类型的张量则device是当前的CUDA 设备 |
| requires_grad | bool | autograd是否记录返回张量上的梯度。默认值为False表示不记录 |
| fill_value | Number | 指定填充到生成Tensor张量中的值 |
| n | int | 生成的单位矩阵的行数 |
| m | int,optional | 生成的单位矩阵的列数,默认情况下省略m,此时生成的是一个方阵 |
(3)函数功能:
1.生成给定size大小的一个全为1的Tensor张量
2.生成和输入张量input大小一致的一个全为1的Tensor张量
3.生成给定size大小的一个全为0的Tensor张量
4.生成和输入张量input大小一致的一个全为0的Tensor张量
5.生成给定size大小并且全为给定值fill_value的一个Tensor张量
6.生成大小为n*n的单位矩阵,是一个二维Tensor张量,默认情况下为方阵
7.生成给定size大小的一个填满未初始化数据的Tensor张量
8.生成和输入张量input大小一致的一个填满未初始化数据的Tensor张量
4.生成由现有数据值组成的Tensor张量
(1)函数原型:
1.torch.tensor(data,dtype,device,requires_grad)
2.torch.from_numpy(ndarray)
(2)参数说明:
| 参数名称 | 参数类型 | 参数说明 |
| data | list/Numpy数组/tuple/scalar | 表示用于创建张量的数据,生成的Tensor维度和data一致 |
| dtype | torch.dtype,optional | 期望返回的张量的数据类型;默认值None表示和给定的内容的类型保持一致 |
| device | torch.device,optional | 返回张量的设备,默认值None表示使用当前设备为默认张量类型; 对于CPU类型的张量则device是CPU;若是CUDA 类型的张量则device是当前的CUDA 设备 |
| requires_grad | bool,optional | autograd操作是否记录返回张量上的梯度,默认值为False表示不记录 |
| ndarray | numpy.ndarray | 用于创建张量的numpy数组,生成的Tensor维度和data一致 |
(3)函数功能:
1.根据给定的输入数据data创建一个指定大小的Tensor张量
2.根据给定的输入numpy数组创建一个指定大小的Tensor张量相关文章:
Pytorch常用函数用法归纳:创建tensor张量
1.torch.arange() (1)函数原型 torch.arange(start,end,step,*,out,dtype,layout,device,requires_grad) (2)参数说明: 参数名称参数类型参数说明startNumber起始值,默认值为0endNumber结束值,取不到,为开区间stepNumber步长值࿰…...
WPF前端:一个纯Xaml的水平导航栏
效果图: 代码: 1、样式代码,可以写在窗体资源处或者样式资源文件中 <Style x:Key"MenuRadioButtonStyle" TargetType"{x:Type RadioButton}"><Setter Property"FontSize" Value"16" />…...
谷粒商城实战(033 业务-秒杀功能4-高并发问题解决方案sentinel 1)
Java项目《谷粒商城》架构师级Java项目实战,对标阿里P6-P7,全网最强 总时长 104:45:00 共408P 此文章包含第326p-第p331的内容 关注的问题 sentinel(哨兵) sentinel来实现熔断、降级、限流等操作 腾讯开源的tendis,…...
STM32项目分享:智能家居(机智云)系统
目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 1.PCB图 2.PCB板及元器件图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片: 哔哩哔哩视频链接: https://www.bilibili.c…...
游戏盾之应用加速,何为应用加速
在数字化时代,用户对于应用程序的防护要求以及速度和性能要求越来越高。为了满足用户的期望并提高业务效率,应用加速成为了不可忽视的关键。 应用加速是新一代的智能分布式云接入系统,采用创新级SD-WAN跨域技术,针对高防机房痛点进…...
Java 基础面试题
文章目录 重载与重写抽象类与接口面向对象a a b 与 a b 的区别final、finalize、finallyString、StringBuild、StringBuffer位运算反射 重载与重写 重载:是在同一个类中,方法名相同,方法参数类型,个数不同,返回类型…...
Nginx 1.26.0 爆 HTTP/3 QUIC 漏洞,建议升级更新到 1.27.0
据悉,Nginx 1.25.0-1.26.0 主线版本中涉及四个与 NGINX HTTP/3 QUIC 模块相关的中级数据面 CVE 漏洞,其中三个为 DoS 攻击类型风险,一个为随机信息泄漏风险,影响皆为允许未经身份认证的用户通过构造请求实施攻击。目前已经紧急发布…...
uniadmin引入iconfont报错
当在uniadmin中引入iconfont后,出现错误: [plugin:vite:css] [postcss] Cannot find module ‘E:/UniAdmin/uniAdmin/static/fonts/iconfont.woff2?t1673083050786’ from ‘E:\UniAdmin\uniAdmin\static\fonts\iconfont.css’ 这是需要更改为绝对路径…...
Vue3【三】 使用TS自己编写APP组件
Vue3【三】 使用TS自己编写APP组件 运行截图 目录结构 注意目录层级 文件源码 APP.vue <template><div class"app"><h1>你好世界!</h1></div> </template><script lang"ts"> export default {name:App //组…...
数字IC后端物理验证PV | TSMC 12nm Calibre Base Layer DRC案例解析
基于TSMC 12nm ARM A55 upf flow后端设计实现训练营将于6月中旬正式开班!小班教学!目前还有3个名额,招满为止!有需要可以私信小编 ic-backend2018报名。吾爱IC社区所有训练营课程均为直播课! 这个课程支持升级成双核A…...
Echarts 在指定部分做文字标记
文章目录 需求分析1. demo1样式调整2. demo22. demo3 定位解决需求 实现在Echarts的折线图中,相同Y值的两点之间显示’abc’ 分析 1. demo1 使用 ECharts 的 markLine 功能来在相邻两个点之间添加标记。其中,我们通过设置标记的 yAxis 和 label 来控制标记的位置和显示内…...
如何发布自己的npm插件包
随着JavaScript在前端和后端的广泛应用,npm(Node Package Manager)已成为JavaScript开发者不可或缺的工具之一。通过npm,开发者可以轻松共享和使用各种功能模块,极大地提高了开发效率。那么,如何将自己开发的功能模块发布为npm插件包,与全球的开发者共享呢?本文将进行全…...
AI和机器人引领新一轮农业革命
AI和机器人技术在农业领域的应用正在迅速发展,未来它们可能会实现厘米级精度的自主耕作。 精确种植:AI算法可以分析土壤条件、气候数据和作物生长周期,以决定最佳种植地点和时间。 土壤管理:利用传感器和机器学习,机器…...
【Kubernetes】三证集齐 Kubernetes实现资源超卖(附镜像包)
目录 插叙前言一、思考和原理二、实现步骤0. 资料包1. TLS证书签发2. 使用 certmanager 生成签发证书3. 获取secret的内容 并替换CA_BUNDLE4.部署svc deploy 三、测试验证1. 观察pod情况2. 给node 打上不需要超售的标签【可以让master节点资源不超卖】3. 资源实现超卖4. 删除还…...
国产Sora免费体验-快手旗下可灵大模型发布
自从OpenAI公布了Sora后,震爆了全世界,但由于其技术的不成熟和应用的局限性,未能大规模推广,只有零零散散的几个公布出来的一些视频。昨日,快手成立13周年,可灵(Kling)大模型发布&am…...
linux嵌入式设备测试wifi信号强度方法
首先我们要清楚设备具体链接在哪个wifi热点上 执行:nmcli dev wifi list rootubuntu:/home/ubuntu# nmcli dev wifi list IN-USE BSSID SSID MODE CHAN RATE SIGNAL BARS > * 14:EB:08:51:7D:20 wifi22222_5G Infr…...
【名词解释】Unity的Inputfield组件及其使用示例
Unity的InputField组件是一个UI元素,它允许用户在游戏或应用程序中输入文本。InputField通常用于创建表单、登录界面或任何需要用户输入文本的场景。它提供了多种功能,比如文本验证、占位符显示、输入限制等。 功能特点: 文本输入ÿ…...
Android 安装调试 TelephonyProvider不生效
直接安装TelephonyProvider的时候,(没有重启)发现数据库没有生效。 猜测应该是原本的数据库没有删除后重建更新。 解决方法:杀掉phone进程 adb shell am force-stop com.android.phone 查看device进程 adb shell ps | grep <…...
【C++】STL中List的基本功能的模拟实现
前言:在前面学习了STL中list的使用方法,现在我们就进一步的讲解List的一些基本功能的模拟实现,这一讲博主认为是最近比较难的一个地方,各位一起加油。 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 …...
C语言基础——函数
ʕ • ᴥ • ʔ づ♡ど 🎉 欢迎点赞支持🎉 个人主页:励志不掉头发的内向程序员; 专栏主页:C语言基础; 文章目录 前言 一、函数的概念 二、库函数 2.1 库函数和头文件 2.2 库函数的使用/…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
DAY 45 超大力王爱学Python
来自超大力王的友情提示:在用tensordoard的时候一定一定要用绝对位置,例如:tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾: tensorboard的发展历史和原理tens…...
