当前位置: 首页 > news >正文

【力扣】矩阵中的最长递增路径

一、题目描述

二、解题思路

1、先求出以矩阵中的每个单元格为起点的最长递增路径

题目中说,对于每个单元格,你可以往上,下,左,右四个方向移动那么以一个单元格为起点的最长递增路径就是:从该单元格往上,下,左,右四个方向走的四条递增路径中的最大值(即最长的一条递增路径)。

2、在求出的所有最长递增路径中找最大值

因为题目是求矩阵中的最长递增路径,所以要在求出的所有最长递增路径中找最大值。

3、使用“记忆化搜索”(递归+“备忘录” )来解决该题。

三、 代码

class Solution {int m, n;//遍历上、下、左、右四个方向所需的数组int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};int[][] memo;  //备忘录public int longestIncreasingPath(int[][] matrix) {m = matrix.length;n = matrix[0].length;memo = new int[m][n];//求所有的最长递增路径中的最大值int ret = 0;for(int i = 0; i < m; i++) {for(int j = 0; j < n; j++) {ret = Math.max(ret,dfs(i, j, matrix));}}return ret;}//递归函数//求出以矩阵中的每个单元格为起点的最长递增路径(上下左右四个方向中的最大值)public int dfs(int i, int j, int[][] matrix) {if(memo[i][j] != 0) {return memo[i][j];}int ret = 1;for(int k = 0; k < 4; k++) {int x = i + dx[k];int y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {ret = Math.max(ret, dfs(x,y,matrix)+1);}}memo[i][j] = ret;return ret;}
}

 

 

相关文章:

【力扣】矩阵中的最长递增路径

一、题目描述 二、解题思路 1、先求出以矩阵中的每个单元格为起点的最长递增路径 题目中说&#xff0c;对于每个单元格&#xff0c;你可以往上&#xff0c;下&#xff0c;左&#xff0c;右四个方向移动。那么以一个单元格为起点的最长递增路径就是&#xff1a;从该单元格往上…...

语音深度鉴伪识别项目实战:基于深度学习的语音深度鉴伪识别算法模型(二)音频数据预处理及去噪算法+Python源码应用

前言 深度学习技术在当今技术市场上面尚有余力和开发空间的&#xff0c;主流落地领域主要有&#xff1a;视觉&#xff0c;听觉&#xff0c;AIGC这三大板块。 目前视觉板块的框架和主流技术在我上一篇基于Yolov7-LPRNet的动态车牌目标识别算法模型已有较为详细的解说。与AIGC相…...

网络原理——http/https ---http(1)

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 今天你敲代码了吗 网络原理 HTTP/HTTPS HTTP,全称为"超文本传输协议" HTTP 诞⽣与1991年. ⽬前已经发展为最主流使⽤的⼀种应⽤层协议. 实际上,HTTP最新已经发展到 3.0 但是当前行业中主要使用的HT…...

Docker安装、使用,容器化部署springboot项目

目录 一、使用官方安装脚本自动安装 二、Docker离线安装 1. 下载安装包 2. 解压 3.创建docker.service文件 4. 启动docker 三、docker常用命令 1. docker常用命令 2. docker镜像命令 3. docker镜像下载 4.docker镜像push到仓库 5. docker操作容器 6.docker …...

USB主机模式——Android

理论 摘自&#xff1a;USB 主机和配件概览 | Connectivity | Android Developers (google.cn) Android 通过 USB 配件和 USB 主机两种模式支持各种 USB 外围设备和 Android USB 配件&#xff08;实现 Android 配件协议的硬件&#xff09;。 在 USB 主机模式下&#xff0…...

240520Scala笔记

240520Scala笔记 第 7 章 集合 7.1 集合1 数组Array 集合(Test01_ImmutableArray): package chapter07 ​ object Test01_ImmutableArray {def main(args: Array[String]): Unit {// 1. 创建数组val arr: Array[Int] new Array[Int](5)// 另一种创建方式val arr2 Array(…...

【React】封装一个好用方便的消息框(Hooks Bootstrap 实践)

引言 以 Bootstrap 为例&#xff0c;使用模态框编写一个简单的消息框&#xff1a; import { useState } from "react"; import { Modal } from "react-bootstrap"; import Button from "react-bootstrap/Button"; import bootstrap/dist/css/b…...

tomcat10部署踩坑记录-公网IP和服务器系统IP搞混

1. 服务器基本条件 使用的阿里云服务器&#xff0c;镜像系统是Ubuntu16.04java version “17.0.11” 2024-04-16 LTS装的是tomcat10.1.24阿里云服务器安全组放行了&#xff1a;8080端口 服务器防火墙关闭&#xff1a; 监听情况和下图一样&#xff1a; tomcat正常启动&#xff…...

探索Sass:Web开发的强大工具

在现代Web开发中,CSS(层叠样式表)作为前端样式设计的核心技术,已经发展得非常成熟。然而,随着Web应用的复杂性不断增加,传统的CSS书写方式逐渐暴露出一些不足之处,如代码冗长、难以维护、缺乏编程功能等。为了解决这些问题,Sass(Syntactically Awesome Stylesheets)应…...

vue组件之间的通信方式有哪些

在开发过程中&#xff0c;数据传输是一个核心的知识点&#xff0c;掌握了数据传输&#xff0c;相当于掌握了80%的内容。 Vue.js 提供了多种组件间的通信方式&#xff0c;这些方式适应不同的场景和需求。下面是4种常见的通信方式&#xff1a; 1. Props & Events (父子组件通…...

111、二叉树的最小深度

给定一个二叉树&#xff0c;找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 题解&#xff1a;找出最小深度也就是找出根节点相对所有叶子结点的最小高度&#xff0c;在这也表明了根节点的高度是变化的&#xff0c;相对不同的叶子结点有不同的高度。…...

SpringBoot3依赖管理,自动配置

文章目录 1. 项目新建2. 相关pom依赖3. 依赖管理机制导入 starter 所有相关依赖都会导入进来为什么版本号都不用写&#xff1f;如何自定义版本号第三方的jar包 4. 自动配置机制5. 核心注解 1. 项目新建 直接建Maven项目通过官方提供的Spring Initializr项目创建 2. 相关pom依…...

音视频开发17 FFmpeg 音频解码- 将 aac 解码成 pcm

这一节&#xff0c;接 音视频开发12 FFmpeg 解复用详情分析&#xff0c;前面我们已经对一个 MP4文件&#xff0c;或者 FLV文件&#xff0c;或者TS文件进行了 解复用&#xff0c;解出来的 视频是H264,音频是AAC&#xff0c;那么接下来就要对H264和AAC进行处理&#xff0c;这一节…...

vue2中封装图片上传获取方法类(针对后端返回的数据不是图片链接,只是图片编号)

在Vue 2中实现商品列表中带有图片编号&#xff0c;并将返回的图片插入到商品列表中&#xff0c;可以通过以下步骤完成&#xff1a; 在Vue组件的data函数中定义商品列表和图片URL数组。 创建一个方法来获取每个商品的图片URL。 使用v-for指令在模板中遍历商品列表&#xff0c;并…...

【C++面向对象编程】(二)this指针和静态成员

文章目录 this指针和静态成员this指针静态成员 this指针和静态成员 this指针 C中类的成员变量和成员函数的存储方式有所不同&#xff1a; 成员变量&#xff1a;对象的成员变量直接作为对象的一部分存储在内存中。成员函数&#xff1a;成员函数&#xff08;非静态成员函数&am…...

最大矩形问题

柱状图中最大的矩形 题目 分析 矩形的面积等于宽乘以高&#xff0c;因此只要能确定每个矩形的宽和高&#xff0c;就能计算它的面积。如果直方图中一个矩形从下标为 i 的柱子开始&#xff0c;到下标为 j 的柱子结束&#xff0c;那么这两根柱子之间的矩形&#xff08;含两端的柱…...

LeetCode62不同路径

题目描述 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。问总共有多少条不同的路径&#xff1f; …...

GNU Radio实现OFDM Radar

文章目录 前言一、GNU Radio Radar Toolbox编译及安装二、ofdm radar 原理讲解三、GNU Radio 实现 OFDM Radar1、官方提供的 grc①、grc 图②、运行结果 2、修改后的便于后续可实现探测和通信的 grc①、grc 图②、运行结果 四、资源自取 前言 本文使用 GNU Radio 搭建 OFDM Ra…...

东方博宜1760 - 整理抽屉

题目描述 期末考试即将来临&#xff0c;小T由于同时肩负了学习、竞赛、班团活动等多方面的任务&#xff0c;一直没有时间好好整理他的课桌抽屉&#xff0c;为了更好地复习&#xff0c;小T首先要把课桌抽屉里的书分类整理好。 小T的抽屉里堆着 N 本书&#xff0c;每本书的封面上…...

react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项目

文章目录 react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项目背景Vite 和 (Create React App) CRAVite&#xff1f;Vite 是否支持 TypeScript&#xff1f; 用Vite创建react项目参考 react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题&#xff0c;其核心在于如何在有限容量的背包中选择物品&#xff0c;使得总价值最大化。根据物品选择规则的不同&#xff0c;主要分为两类&#xff1a; 01 背包&#xff1a;每件物品最多选 1 次&#xff08;选或不选&#…...

MLP实战二:MLP 实现图像数字多分类

任务 实战&#xff08;二&#xff09;&#xff1a;MLP 实现图像多分类 基于 mnist 数据集&#xff0c;建立 mlp 模型&#xff0c;实现 0-9 数字的十分类 task: 1、实现 mnist 数据载入&#xff0c;可视化图形数字&#xff1b; 2、完成数据预处理&#xff1a;图像数据维度转换与…...